UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY # A GEOCHEMICAL INVESTIGATION OF A KNOWN MOLYBDENUM-TIN ANOMALY IN SOUTHWESTERN UTAH Ву J. D. Tucker, W. R. Miller, J. M. Motooka, and A. E. Hubert Open-File Report 81-576 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards # CONTENTS | | Page | |---|------| | Abstract | 1 | | Acknowledgments | 1 | | Introduction | 2 | | Geologic setting | 5 | | Sample collection | 10 | | Analytical methods | 11 | | Generation of contour maps | 11 | | Results | 11 | | Objective rock sample data | 12 | | Subjective rock sample data | 27 | | Discussion | 35 | | Conclusions | 50 | | References cited | 51 | | Appendix 1 | 57 | | FIGURES | | | Figure 1Index map of the survey area, southern | | | Wah Wah Mountains, Utah | 3 | | Figure 2Generalized geologic map of the | | | study area | 6 | | Figure 3Graphical representation of the | | | sampling design | 12 | | Figure 4Sample site locations of both object and subjective samples | 13 | | Figure 5Objective rock data contour map for Sn | 19 | # FIGURES--Continued | | | | | | | | | | Page | |--------|--------------|---------|-------|---------|-------|-----|------|---------------|------| | Figure | 6Objective | rock da | ata c | ontour | map | for | Bi- | | 20 | | Figure | 7Objective | rock d | ata c | contour | map | for | Мо | | 21 | | Figure | 8Objective | rock da | ata c | contour | map | for | Ве | | 22 | | Figure | 9Objective | rock d | ata d | contour | map | for | Υ - | | 23 | | Figure | 10Objective | rock da | ata c | contour | map | for | Nb | | 24 | | Figure | 11Objective | rock d | ata d | contour | map | for | Li | | 25 | | Figure | 12Objective | rock da | ata c | contour | map | for | F - | | 26 | | Figure | 13Objective | rock d | ata d | contour | map | for | Се | | 28 | | Figure | 14Objective | rock d | ata d | contour | map | for | La | | 29 | | Figure | 15Objective | rock d | ata d | contour | map | for | Fe | | 30 | | Figure | 16Objective | rock d | ata o | contour | map | for | A1 | | 31 | | Figure | 17Objective | rock d | ata d | contour | map | for | Si | | 32 | | Figure | 18Subjective | rock | data | point | plots | for | - Mc | o, Bi, and Sn | 34 | | Figure | 19Subjective | rock | data | point | plot | for | Ве | | 36 | | Figure | 20Subjective | rock | data | point | plot | for | Υ - | | 37 | | Figure | 21Subjective | rock | data | point | plot | for | Nb | | 38 | | Figure | 22Subjective | rock | data | point | plot | for | Li | | 39 | | Figure | 23Subjective | rock | data | point | plot | for | F- | | 40 | | Figure | 24Subjective | rock | data | point | plot | for | Се | | 41 | | Figure | 25Subjective | rock | data | point | plot | for | La | | 42 | | Figure | 26Subjective | rock | data | point | plot | for | Fe | | 43 | | Figure | 27Subjective | rock | data | point | plot | for | A1 | | 44 | | Figure | 28Subjective | rock | data | point | plot | for | Si | | 45 | | Figure | 29Subjective | rock | data | point | plot | for | Ва | | 46 | | Figure | 30Subjective | rock | data | point | plot | for | Sr | | 47 | # TABLES | | | Page | |-------|---|------| | Table | 1Summary of analytical results for the objective samples | - 15 | | Table | 2Summary of analytical results for the subjective samples | - 16 | | Table | 3Matrix of correlation of the 210 objective samples | - 17 | | Table | 4Matrix of correlation of the 80 subjective samples | - 33 | ## **ABSTRACT** A detailed geochemical survey utilizing bedrock samples was conducted over an area containing a known molybdenum-tin drainage sediment anomaly in the southern Wah Wah Mountains in southwestern Utah. The geochemical patterns found in this survey are similar to those around known porphyry-type molybdenum deposits. The elements associated with the anomaly are Mo, Sn, Bi, Be, F, Li, Nb, and Y; and the depleted elements are Al, Ce, Fe, La, and Si. The geochemical distribution of these elements associated with an area of leucocratic rhyolite suggests this anomaly is probably located above a felsic body at depth with possible porphyry-type molybdenum mineralization. #### ACKNOWLEDGMENTS The authors with to thank T. A. Steven for discussions on the geochemistry and geology of the area and R. E. Tucker for assistance in sample collection. #### INTRODUCTION During the summer of 1978, a regional geochemical survey utilizing stream-sediment samples was conducted in the Richfield J° x 2° quadrangle in southwestern Utah, as part of the U.S. Geological Survey's Conterminous U.S. Mineral Appraisal Program (CUSMAP) (Figure 1). Several areas of anomalously high metal content were identified by this regional survey (Motooka and others, 1979; Miller and others, 1980). One area in the southern Wah Wah Mountains in the southwest corner of the Richfield 1° x 2° quadrangle was anomalously high in molybdenum, tin, and other trace elements characteristic of fluids from a crystallizing felsic body. Although no altered rocks or mineral deposits have been recognized, a porphyry-type molybdenum deposit may exist in association with a hidden intrusive body at depth (Lindsey and Osmorson, 1978; Miller and others, 1980). To assess the potential for mineralized rock more completely, a detailed geochemical survey consisting of rock and drainage sediments was conducted over the regional Mo-Sn anomaly in the Southern Wah Wah Mountains during the summer of 1979. The area covered approximately 66 square miles (160 square kilometers). The survey area is located in the Bible Spring, Mountain Spring Peak, Observation Knoll, and the Tetons 7 1/2-minute quadrangles. The survey area was extended beyond the regional Mo-Sn anomaly so as to reflect background values in the area. A rock geochemical survey was utilized because the geochemical properties of rocks can be examined directly. Slight elemental changes associated with mineralization and halo formation can be detected. These often subtle changes in elemental concentrations can often be overlooked in petrological studies (Bailey and McCormick, 1974). Figure 1.--Index map of the survey area, southern Wah Wah Mountains, from the Richfield 1° by 2° quadrangle, Utah. There are two geochemical suites defined by the data: those elements that are associated with the regional anomaly and those elements whose concentrations are depleted in the area of the regional anomaly. The elements associated with the regional anomaly are Mn, Cr, F, Y, Na, Be, Nb, Rb, Le, Mo, Bi, and Pb. Those depleted elements are Si, K, Ca, La, Ce, Zn, Fe, Al, W, Mg, Sr, V, Ba, and Ti. This report will discuss the elements Mo, Sn, Bi, Be, F, Nb; Y, and Li with respect to enrichments and the elements Al, Si, Fe, Ce, and La with respect to depletions in conjunction with the regional anomaly. #### GEOLOGIC SETTING The study area is within the Pioche-Marysvale mineral belt in the Basin and Range province, southwestern Utah. The area is on trend with the eastwest Blue Ribbon lineament, which is considered to be a deep crustal feature (Rowley and others, 1978). The area also contains regional elemental trends of Sn (Sainsbury and others, 1969), W (Kerr, 1946), Be (Shawe, 1966), and F (Shawe, 1976). In addition, the anomaly is underlain by a broadscale magnetic low (Mabey and Virgin, 1980). Mining in the Pioche-Marysvale mineral belt has been mainly for Au, Ag, Cu, F, Mn, Pb, U, W, Zn, and alunite. These deposits are associated mainly with upper Tertiary alkali rhyolite centers, which in the southern Wah Wah Mountain area, are commonly localized in areas of intensive hydrothermal alteration (Rowley and others, 1978). Figure 2 is a generalized geologic map of the study area. The major rock types in the area are upper Tertiary alkalic rhyolite flows, flow domes, and ash-flow tuffs, which overlie Paleozoic sedimentary rocks that are predominately limestone (Best, 1979; Best and Jeffrey, 1979; Rowley and others, 1978). Several areas of altered rocks have been mapped in the study area (Best and Jeffrey, 1979; Best, 1979), and although extensively prospected, no major mining activity has occurred within the study area. A porphyry-type molybdenum deposit has recently been discovered at Pine Grove approximately 18 miles (29 kilometers) north of the survey area. Figure 2.--Generalized geologic map of the study area. After Best, 1979, and Best and Jeffrey, 1979. # DESCRIPTION OF MAP UNITS ON FIGURE 2 Qac ALLUVIUM AND COLLUVIUM (QUATERNARY)--Unconsolidated, poorly sorted stream, fan and slope-wash deposits of gravel, sand, and silt. FORMATION OF BLAWN WASH(MIOCENE) Tbr Rhyolite member of Broken Ridge--A sequence of gray, red brown, and lavender felsitic lava flows with locally autobrecciated margins and vitrophyric bases; strongly flow layered and commonly show spherulitic, vuggy, and lithophysal fabrics. One exceptionally porphyritic rhyolite with abundant phenocrysts of smokey quartz, sanidine, playioclase, and minor biotite occurs at the base of the sequence at the north end of Broken Ridge; other rhyolite flows are weakly porphyritic and even aphyric in places, and the sparse phenocrysts, generally less than 1-2 mm across, consist of smokey quartz, alkali feldspar, and playioclase. Topaz and rare fluorite have been noted in vuqs. Individual flows may be only a few tens of meters thick, whereas the entire sequence may be as much as 200-300 meters thick. An age of 20. m.y. is reported on a similar topaz rhyolite flow in the Teton quadrangle to the north of Broken Ridge. The Rhyolite member of Pink Knolls--Flows and shallow intrusive plugs and dikes of gray to brown strongly porphyritic rhyolite; locally vitrophyric. Phenocrysts of quartz, sanidine, plagioclase, and lesser biotite comprise as much as one-third of the rock. Phenocrysts range widely in size, and within individual outcrops, sanidine and quartz range
from small crystals to prominent phenocrysts as much as 3 cm and 1 cm across, respectively. Tuff member--A sequence of light-colored, generally loosely consolidated, vitric-lithic ash-flow and minor air-fall tuffs with intervening beds of stratified water-lain tuffs, volcanic sandstones, and conglomerates. The topaz rhyolite at the Tetons is underlain by a strongly welded ash-flow tuff with collapsed pumice lenses of black or brown glass. Tuffs in the unit contain less than 10 percent phenocrysts of quartz, plagioclase, sanidine, and biotite and have abundant pumice lapilli. Fragments of the Lund Tuff Member, as much as 25 cm across, are typically present and are especially common in the epiclastic beds. Scattered fragments of Lund are commonly the only indication of the unit beneath poorly exposed slopes. The unit appears to be comprised of locally-derived material, in part representing the precursory explosive facies of younger rhyolite flows and intrusions. Tha HORNBLENDE ANDESITE (MIOCENE)--Platy, gray rock with abundant acicular black hornblende and lesser green augite phenocrysts in a very fine grained trachytic matrix rich in plagioclase; locally phenocryst-poor or even aphyric. Ti ISOM FORMATION (MIOCENE OR OLIGOCENE)--Densely welded, vuggy, eutaxitic red-brown to lavender ash-flow tuff with less than 20 percent phenocrysts of plagioclase and minor amounts of minute black pyroxene; weathers into grus. At least two cooling units occur. NEEDLES RANGE FORMATION (OLIGOCENE)--Purple-gray to red-brown, firmly welded, crystal-rich ash-flow tuffs in which phenocrysts of plagioclase, biotite, hornblende, and quartz constitute nearly half of the rock; compressed pumice lapilli are locally conspicuous. Age--29 m.y. (Fleck and others, 1975). Individually mapped. Lund Tuff Member--Crystal-rich ash-flow tuff characterized by about 10 percent quartz, 10 percent biotite, and lesser amounts of horn-blende phenocrysts, together with about 25 percent plaqioclase. Black vitrophyre, a few meters thick, lies at the base in the eastern part of the quadrangle where the unit is 400 m or more thick. Wah Wah Springs Tuff Member--Crystal-rich ash-flow tuff characterized by abundant plagioclase, hornblende, and biotite phenocrysts and less than 2 percent quartz phenocrysts. A black vitrophyre occurs at the base of the unit where the total thickness exceeds 230 m. Te ESCALANTE DESERT FORMATION, UNDIVIDED (OLIGOCENE)—A sequence of crystal-poor, lithic, rhyolitic to quartz-latitic ash-flow tuffs, andesitic and rhyolitic lava flows, and volcanic sandstone described by Grant (1978) and Campbell (1978). "The type section for the formation is the northeast flank of hill 6535 (Lund Quadrangle), sec. 6, T. 32 S., R. 14 W. It includes all lithologies from the first ash-flow above the volcanic conglomerate to the base of the Wah Wah Springs Member of the Needles Range Formation" (Grant, 1978, p. 27). The name is taken from the large flat desert valley which extends into the southeast half of the Lund Quadrangle at the southern end of the Wah Wah Mountains. Teb Beers Spring Member--Green-brown, well-sorted volcanic sandstone. Exposed thickness ranges from 0 to as much as 400 m south of Jockey Road where a local lense of pyroxene-plagioclase-phyric andesite and a firmly welded ash-flow tuff are included. Tef Quartz latite flow member--Lavender-gray, somewhat platy, with less than 10 percent phenocrysts (highly altered) of plagioclase, biotite, and hornblende. - Ter Rhyolite member--Variegated lavender, brown, red to pink, platy, flow-layered, felsitic rhyolite with phenocrysts of chalky plagioclase (often weathered out, leaving pits) and inconspicuous biotite; hornblende appears in some thin sections. - Tea Andesite member--Black, massive, generally nonvesicular, with phenocrysts of plagioclase and augite; weathers into brown blocks. Maximum thickness is 360 m. - Tuff member of Marsden Spring--White, orange, pale-green or gray crystal-poor and locally lithic-rich ash-flow tuff; phenocrysts of quartz, feldspar, and biotite are less than 1 mm across and comprise only a few percent of the rock; lithic fragments include pink and gray felsite and, near the base of the tuff, pink quartzite. Unit includes a tuff containing abundant plagioclase and biotite phenocrysts in exposures two miles southwest of Herd Pass. Thickness is 0-300 m. - P PALEOZOIC SEDIMENTARY ROCKS, UNDIVIDED Chiefly limestones After Best, 1979 and Best and Jeffrey, 1979. ## SAMPLE COLLECTION Two sets of rock samples were collected within the survey area; objective samples were collected from randomly selected outcrops at a density of one sample per 0.25 square miles (0.64 square kilometers), and subjective samples were collected from obviously altered and mineralized rock. Sample numbers within the 1000 and 2000 series are subjective samples, all other sample numbers are of objective samples. The 7 1/2-minute quadrangle maps of the survey area were divided into cells using a 0.50-mile grid length. Each cell was then divided into 4 squares, defined as subcells. One subcell was randomly selected from each cell for field collection (Figure 3). The sample site was an area of approximately three feet across (1 square meter). Weathering surfaces were removed and one to three pounds (400g to 1000g) of fresh rock chips were placed in cotton sacks. Duplicate samples were collected from 12 outcrops from sites located 30 to 100 feet (10 to 30 meters) from the original site. If the designated subcell did not contain an outcrop, an alternate subcell from the same cell was sampled. A total of 210 objective samples and 80 subjective samples were collected from the survey area (Figure 4). #### ANALYTICAL METHODS The rock samples were pulverized and subjected to a total digestion with HNO_3 - $HC1O_4$ - HF and analyzed with the inductively coupled plasma atomic emission spectrometer (ICP) for the elements Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ge, La, Mg, Mn, Nb, Ni, P, Pb, Sb, Sn, Sr, Ti, V, W, Y, and Zn. Ag, As, Au, B, Ge, and Sb were either below the detection limit of the ICP or were lost in the decomposition procedures. Li, Na, and Rb were analyzed by atomic absorption. Ca, K, and Si were analyzed by X-ray fluorescence, and F was analyzed by ion-specific electrode after digestion with $Na_2CO_3-K_2CO_3-KNO_3$ flux. (Delezal, Povondra and Sulcek, 1966; Grimes and Marranzino, 1968; Hopkins, 1977; Meier, 1980; Motooka and Grimes, 1976). ## GENERATION OF CONTOUR MAPS Computer-generated contour maps for each element were prepared using the U.S. Geological Survey's STPMAP program written by J. Kork and modified by G. Van Trump. The program calculates an average value within a square cell and uses the average to generate the maps. Therefore, cell values are contoured and not individual sample values. Some spatial displacement of Figure 3.--Graphical representation of the sampling design. Figure 4.--Sample site locations of both objective and subjective samples. Subjective samples are designated by 1000 or 2000 numbers. actual anomalies is possible using this method. The survey area was divided into 30 contouring cells along the X-axis and included an area slightly larger than the survey area, which minimized contour edge exaggerations. ## RESULTS The analytical results for the rocks are given in Appendix 1. The elements Al, Ba, Be, Bi, Ce, Cr, Fe, La, Mg, Mn, Mo, Nb, Pb, Sn, Sr, V, W, Y, Zn, Li, Na, Rb, Ca, K, Si, F, and Ti were used in data interpretation. All of these elements show concentration variations that are associated with the regional geochemical anomaly. The elements Mo, Sn, Bi, Be, F, Li, Nb, and Y are generally enriched in the regional anomaly while the elements Al, Ce, Fe, La, and Si are generally depleted in the regional anomaly. A summary of the analytical results for the objective and subjective samples are given in Table 1 and Table 2 respectively. Analysis of the elements Ag, As, Au, B, Ge, and Sb was not possible due to element loss in the decomposition procedures or because too few values were reported. Calcium values from the X-ray fluorescence analysis were used instead of those from the ICP. No clear geochemical trends were exhibited by Cd, Co, P, or Ni and these elements were not used in data interpretation. #### OBJECTIVE ROCK SAMPLE SURVEY RESULTS The correlation matrix for the logarithmetic rally transformed objective rock data is given in Table 3. Fluoride has significant correlation coefficients with respect to K, Si, Be, Li, Mn, Nb, Rb, and Y at the 0.05 significance level. Cerium has significant correlations with Al, Fe, K, Na, Ti, Ba, La, P, Sr, and Zn at the 0.05 significance level. Tin has significant correlations with Na, Be, Bi, Zn, and Mo at the 0.05 significance level. These geochemical suites suggest an emplacement of a highly differentiated Table 1.--Summary of analytical results for the objective samples | Element | Minimum | Maximum | Mean | Geometric
mean | Standard
deviation | Geometric
deviation | Valid * | |----------|---------------|-----------------------------------|-------------|-------------------|-----------------------|------------------------|---------| | A1% | 90.0 | 13. | 7.1 | 5.3 | 2.6 | 3.2 | 210 | | Ca% | 0.01 | 40. | 4.0 | 1.4 | 8.0 | 3.9 | 210 | | Fe% | 0.02 | 5.2 | 1.5 | 06.0 | 1.2 | 3.2 | 210 | | K% | 0.01 | 3.2 | 1.7 | 1.1 | 0.72 | 4.7 | 203 | | Wg% | 10.0 | 16. | 1.3 | 0.22 | 3.3 | 6.2 | 210 | | Na% | 0.10 | 3.9 | 2.3 | 1.5 | 1.1 | 3.7 | 188 | | Si% | 0.01 | 47. | 29. | 22 | 6.6 | 3.9 | 210 | | 1.1% | 0.0002 | 0.86 | 0.20 | 0.08 | 0.10 | 5.1 | 208 | | Ba ppm | 0.15 | 2600 | 200 | 110 | 260 | 11. | 203 | | Ве ррш | 0.04 | 94. | 5.5 | 2.4 | 7.9 | 5.4 | 192 | | Bi ppm | 50. | .69 | 36. | 36 | 4.2 | 1.1 | 80 | | Ce ppm | 0.6 | 200 | 84. | 63 | .64 | 2.6 | 185 | | Cu ppm | 2.0 | 48. | 4.7 | 2.9 | 6.4 | 2.4 | 105 | | F ppm | 74. | 5300 | 1100 | 700 | 1000 | 2.6 | 210 | | La ppm | 1.6 | 95. | 39. | 30. | 22.
| 2.6 | 199 | | L1 ppm | 2.0 | 140 | 33. | 22. | 28. | 2.8 | 210 | | Mn ppm | 13. | 1900 | 440 | 330 | 260 | 2.6 | 210 | | шо ом | 3.8 | 17. | 2.8 | 2.8 | 1.1 | 1.2 | 11 | | mdd qN | 3.0 | 130 | 41. | 23. | 37. | 3.3 | 189 | | Ni ppm | 4.0 | 250 | 7.6 | 4.4 | 22. | 2.1 | 85 | | P ppm | 14. | 2100 | 440 | 130 | 470 | 8.9 | 160 | | Pb ppm | 15. | 67. | 21. | 17. | 14. | 1.9 | 83 | | Kb ppm | 0.10 | 006 | 300 | 130 | 250 | 8.5 | 199 | | Sn ppm | 20. | 40. | 20. | 14. | 1.9 | 1.1 | 210 | | Sr ppm | 2.2 | 1600 | 230 | 70. | 260 | 9.9 | 210 | | wdd A | 1.8 | 140 | 21. | 6.1 | 27. | 5.3 | 116 | | W ppm | 26. | 44. | 19. | 19. | 4.0 | 1.2 | 21 | | Y ppm | 0.40 | 110 | 32. | 15. | 31. | 4.7 | 194 | | Zn ppm | 0.50 | 110 | 43 | 31. | 21. | 3.2 | 201 | | * Number | of samples al | samples above the detection limit | tion limit. | | | | | Table 2.--Summary of analytical results for the subjective samples | | | | | | 1 | | | |----------|------------|---------------------------|-------------|-------------------|-----------------------|------------------------|-------| | Element | Minimum | Maximum | Mean | Geometric
mean | Standard
devlation | Geometric
deviation | Valid | | A1% | 0.02 | 17. | 5.3 | 2.5 | 3.6 | 5.8 | 80 | | Ca% | 0.001 | 40. | 4.2 | 0.82 | 8.8 | 6.2 | 80 | | Fe% | 0.01 | 19. | 1.4 | 0.42 | 2.8 | 5.8 | 80 | | K% | 0.01 | 3.2 | 1.3 | 0.52 | 0.95 | 7.6 | 9/ | | %8M | 0.0004 | 16. | 1.3 | 0.15 | 3.6 | 7.7 | 80 | | Na% | 10.0 | 3.9 | 1.3 | 0.55 | 1.3 | 4.9 | 61 | | Si% | 10.0 | 47. | 29. | 16. | 13. | 7.4 | 79 | | T12 | 0.0002 | 0.56 | 0.11 | 0.04 | 0.14 | 5.3 | 62 | | Ba ppm | 0.15 | 3100 | 390 | .69 | 620 | 12. | 9/ | | Be ppm | 0.04 | 50. | 5.5 | 2.2 | 7.3 | 5.4 | 75 | | B1 ppm | 50. | 96. | 36. | 36. | 8.4 | 1.2 | £ | | Ce ppm | 0.6 | 970 | 75. | 37. | 120 | 3.7 | 99 | | Cu ppm | 2.0 | 180 | 5.3 | 2.1 | 21. | 1.5 | 23 | | F ppm | 50. | 4200 | 840 | 480 | 920 | 3.0 | 80 | | La ppm | 1.6 | 310 | 29. | 14. | 38. | 4.3 | 65 | | Li ppm | 2.0 | 100 | 25. | 14. | 25. | 2.9 | 80 | | Mn ppm | 1.0 | 1300 | 280 | 120 | 270 | 5.0 | 80 | | Mo ppm | 3.8 | 180 | 8.9 | 3.3 | 22. | 2.1 | 10 | | Mb ppm | 3.0 | 120 | 34. | 17. | 32. | 3.9 | 62 | | Ni ppm | 4.0 | 31. | 3.7 | 3.2 | 3.8 | 1.5 | 13 | | P ppm | 14. | 2900 | 270 | 57. | 470 | 9.9 | 777 | | Pb ppm | 15. | .68 | 24. | 19. | 18. | 2.0 | 04 | | Mb ppm | 0.10 | 800 | 220 | 75. | 220 | 8.7 | 92 | | sn ppm | 20. | 21. | į | | ! | ţ | | | Sr ppm | 2.4 | 2200 | 230 | 63. | 410 | 5.7 | 80 | | M ppm | 1.8 | 330 | 22. | 6.4 | 54. | 5.2 | 39 | | mdd M | 26. | 130 | 22. | 20. | 16. | 1.4 | 9 | | Y ppm | 0.40 | 95. | 23. | 6.8 | 26. | 7.3 | 63 | | Zn ppm | 1.0 | 250 | 35. | 36. | 18. | 4.2 | 9/ | | * Number | of samples | above the detection limit | rection 11m | lt. | | | | ¹⁶ $\frac{\partial \varphi_{0}^{2}}{\partial \varphi_{0}^{2}} + \frac{\partial \frac{\partial$ 0.00 0.57 0.022 0.022 0.022 0.022 0.035 0.0 S BMD objective 210 the † 5 € - Ē 11.00 coeffici-اد ا relati ة ق 0.16 0.05 0.05 0.05 0.07 0.07 0.03 0.03 0.01 9.00.53 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.07 0.08 0.09 0.0 11 0.05 0.06 0.06 0.06 0.06 0.07
0.07 0. 0.50 0.50 0.050 0. -0.55 -0.56 となれてもまなけんののにもこれをもとりもないとととか 17 leucocratic ore element-rich body at depth. The elements Mo, Sn, F, and Be are commonly closely associated with each other in economic or potentially economic primary Sn and Mo deposits (Groves and Taylor, 1973; Haapala, 1977; Lamarre and Hodder, 1978; Rub, 1972; Sainsbury, 1969; Turneaure, 1971, and Wallace and others, 1978; Mulligan, 1971; Vlasov, 1966). In the survey area anomalous Sn and Bi show spatial distribution over the regional anomaly (Figures 5 and 6). The highest values for Mo occur in the northeast part of the survey area in a highly altered area near an old mercury mine (Figure 7). The elements Be, Y, Nb, Li, and F show two major concentration anomalies (Figures 8-12). One anomaly designated the northern anomaly, is located in the northern portion of the survey area within the regional anomaly. No altered or mineralized rocks have been mapped in this area (Best, 1979). The other anomaly designated the southern anomaly, is located in the southern portion of the survey area within an area of highly altered rocks. Both anomalous areas have high concentrations of the enriched elements, but the northern anomaly contains higher concentrations and larger spatial distribution of F, Li, Mo, Sn, and Bi. The southern anomaly is located within both ash-flow tuffs and rhyolite flows, whereas the northern anomaly is restricted to rhyolitic flows and domes (Figure 3). The rocks exposed between the two anomalies is the same rhyolite as is exposed in the regional anomaly. Most of the rocks in the southern anomaly have been bleached and undergone feldspar-destructive alteration with the development of silicious capping. The northern anomaly contains no obvious alteration but the rocks underlying the area may be propylitically altered, similar to the rocks observed along Four-Mile Wash to the east of the regional anomaly. Figure 5.-- Contoured objective rock data for Sn. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals 25,30,40 ppm. Figure 6.-- Contoured objective rock data for Bi. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals 50, 55, 60 ppm. Figure 7.-- Contoured objective rock data for Mo. Horizontal lines show the approximate location of the original anomaly. The dots are sample site locations. Contour intervals are 3.5, 5.0, and 10.0 ppm. Figure 8.-- Contoured objective rock data for Be. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals 2, 10, 14, 20 ppm. Figure 9. -- Contoured objective rock data for Y. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals 44, 66, 77, 88 ppm. Figure IO-- Contoured objective rock data for Nb. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals 41, 67, 93, 119 ppm. Figure 11-- Contoured objective rock data for Li. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals 16, 25, 50, 79 ppm. Figure 12-- Contoured objective rock data for F. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals .07, .14, .26, .30, .39 percent. The depleted elements have even lower concentrations over both the northern and southern anomalies (Figures 13-17). Cerium and La depletions outline the two anomalies best (Figures 13 and 14), whereas Fe and Al show broad areas of depletion around the anomalies (Figures 15 and 16). Silica shows a depletion within and slightly north of the northern anomaly (Figure 17). The objective data contour maps show the expected geochemical trends for elements associated with the
emplacement of a highly differentiated, leucocratic, potentially ore-element-rich body. The northern anomaly has the highest concentrations of F, Li, Mo, Sn, and Bi. Both the southern and northern anomalies have low concentrations of the depleted elements but the northern anomaly contains the lowest Si concentration. ## SUBJECTIVE ROCK SAMPLE DATA Point plots were made of the subjective samples, as the number of samples was not great enough to contour. The correlation matrix for logarithmically transformed data is given in Table 4. Fluoride has significant correlation coefficients with respect to Al, Be, Li, Mn, Nb, Ni, Pb, Rb, Sr, Y, and Zn at the 0.05 significance level. Cerium has significant correlation coefficients with respect to Al, Cu, La, Ni, P, Sr, V, and Zn at the 0.05 significance level. The ore elements, Mo, Sn, and Bi have high concentrations in the regional anomaly (Figure 18) as well as a few other areas outside the anomaly. The highest Bi value (sample 1024) and anomalous F concentrations occur north of the regional anomaly. The sample was taken from a small bleached and silicified outcrop in contact with an ash-flow tuff. Two areas containing anomalous concentrations of Mo and Bi north of the regional anomaly are found in hydrothermally altered rocks, as evidenced by samples 1049, 1051, and 1054. The highest Mo value is from the northern part of the area (samples 1045 and 1043) Figure 13-- Contoured objective rock data for Ce. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals 81, 97, 176, 188 ppm. Figure 14.-- Contoured objective rock data for La. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals 29, 48, 57, 76 ppm. Figure 15.-- Contoured objective rock data for Fe. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals .6, 1.0, 2.0, 3.2 percent. Figure 16:-- Contoured objective rock data for Al. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals 7, 8, 9 percent. Figure 17.- Contoured objective rock data for Si. Horizontal lines show the approximate location of the original anomaly, while vertical lines show the area of highest concentration. The dots are sample site locations. Contour intervals 32, 35, 36, 38 percent. 765.65 765.65 765.65 765.65 765.65 765.65 765.65 765.65 765.65 700.44 700.65 70 0.000 S1 -0.00 -0.225 -0 72.00.00 72.00.00 72.00.00 72.00 73.00 74.00 75.00
75.00 75. -0.62 -0.02 Ľ, 3 ર્દ Z -moh-8 ក្នុងកុំខ្លួន នេះ ១០១៤១០១១១១ កំពុងកុំខ្លួន ។ ខ្លួនកូច្នា នេះ ១០១៤១១១១១១ កំពុងកុំខ្លួន ។ Table 4. Natrix of correlation coefficients of the 30 subjective samples. The number of valid pairs are shown below the diagonal. Figure 18.-- Comparison of subjective rock data for Mo, Bi and Sn to the contoured objective rock data for Mo. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective data. Contour intervals are 3.5, 5.0, 10.0 ppm. The small dots are sample site locations. where samples of extensively iron-stained and silicified rocks were taken, possibly along a fault zone. The enriched elements Be, Y, Nb, Li, and F all have high values over both the northern and southern anomalies (Figures 19-23). The highest Be value (sample 1040) occurs in highly altered breccia, cemented by purplish-grey jasperoid in the northern anomaly. Other samples containing high values of the enriched elements are from flow-banded, vuggy, and sometimes brecciated rhyolite and from bleached and silicified rocks in highly fractured areas, possibly fault zones. The behavior of the depleted elements in the subjective samples is similar to that shown by the objective sample contour maps. The highest concentration of depleted elements is usually in areas away from the highest concentration of enriched elements (Figures 24-28). One low value of Si occurs in the northern anomaly. This sample (1039) is from an area of jasperoid within the rhyolite near the center of the northern anomaly. The elements Ba and Sr are concentrated away from the enriched elemental anomalies (Figures 29 and 30). The two anomalies outlined by the objective rock data are also outlined by the subjective rock data showing the enriched and depleted elemental trends. The anomalous samples outside the northern and southern anomalies represent altered and mineralized rocks along possible faults and fractures. # DISCUSSION The geochemistry and geology of the study area are very similar to those around known Mo and Sn deposits (Lamarre and Hodder, 1978; Sainsbury, 1969). Most of these deposits are found in leucocratic, alkali granites or hypabyssal rhyolites (Barakso and Gower, 1973; Hosking, 1965a; Sharp, 1978; and Wallace and others, 1978) that commonly are the youngest phase of a larger Figure 19.1. Comparison of subjective rock data to contoured objective rock data for Be. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective rock data. Contour intervals are 2, 10, 14, 20 ppm. The small dots are sample site locations. Figure 20-- Comparison of subjective rock data to contoured objective rock data for Y. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective rock data. Contour intervals are 44, 66, 77, 88 ppm. The small dots are sample site locations. Figure 21.-- Comparison of subjective rock data to contoured objective rock data for Nb. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective rock data. Contour intervals are 41, 67, 93, 119 ppm. The small dots are sample site locations. Figure 22.-- Comparison of subjective rock data to contoured objective rock data for Li. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective data. Contour intervals are 16, 25, 50, 79 ppm. The small dots are sample site locations. Figure 23.-- Comparison of subjective rock data to contoured objective rock data for F. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective data. Contour intervals are .07, .14, .26, .30, .39 percent. The small dots are sample site locations. Figure 24.-- Comparison of subjective rock data to contoured objective rock data for Ce. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective data. Contour intervals are 81, 97, 176, 188 ppm. The small dots are sample site locations. Figure 25.-- Comparison of subjective rock data to contoured objective rock data for La. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective data. Contour intervals are 29, 48, 57, 76 ppm. The small dots are sample site locations. Figure 26.-- Comparison of subjective rock data to contoured objective rock data for Fe. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective data. Contour intervals are .6, 1.0, 2.0, 3.2 percent. The small dots are sample site locations. Figure 27.-- Comparison of subjective rock data to contoured objective rock data for Al. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective rock data. Contour intervals are 7, 8, 9 percent. The small dots are sample site locations. Figure 28.-- Comparison of subjective rock data to contoured objective rock data for Si. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective data. Contour intervals are 32, 35, 36, 38 percent. The small dots are sample site locations. Figure 29.-- Comparison of subjective rock data point plots for Ba to contoured objective rock data for Mo. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective rock data. Contour intervals are 3.5, 5.0, 10.0 ppm. The small dots are sample site locations. Figure 30.-- Comparison of subjective rock data point plots for Sr to contoured objective rock data for Mo. Horizontal lines show the approximate location of the regional anomaly, while vertical lines show the areas of highest concentration of objective rock data. Contour intervals are 3.5, 5.0, 10.0 ppm. The small dots are sample site locations. differentiated granitic body. The mineralized rocks tend to form cusps in apical portions of roof zones (Coats and others, 1962; Dagger, 1972; Rattigan, 1963; Stemprok and Sulcek, 1969). Most residual fluids from magnatic differentiation tend to collect in these cusps, greatly concentrating the trace elements (Groves and Taylor, 1973; Groves and McCarthy, 1978; and Sheraton and Black, 1973). The degree of differentiation in the larger parent body determines the No, Sn, and other trace element content in the residual fluids (Hosking, 1965b). The presence of mafic mineral phases, especially hornblende and to some
degree biotite, greatly affects the concentration of certain elements in the residual fluids (Hesp and Rigby, 1972, and Olade, 1980), because these elements tend to enter the crystal structures of the mafic minerals and become widely dispersed throughout the igneous body with no subsequent concentration of the ore elements (Hosking, 1965a and Haapala, 1977). The residual fluids found with felsic bodies are generally high in elements such as F, Li, Be, Rb, Nb, Y, Pb, Cu, Zn, Ag, Ge, Mo, Mn, W, and Bi. These same fluids tend to have low concentrations of certain elements such as Fe, Ti, Ba, Sr, Mg, Ce, La, Al, and Zr (Boyle, 1974; Hosking, 1965a; Sainsbury, 1969; VanAlstine, 1976). These residual fluids can be dispersed and imprinted in the wall rocks and existing mineralogy through resurgent boiling and autobrecciation (Phillips, 1973; and Groves and Taylor, 1973). These imprinted elements form halos away from the cusps along thermal gradients (Dagger, 1972; Hosking, 1965a; Olade, 1980). The slower the cooling process, the greater the migration from the cusp (Wallace and others, 1978). Generalized schematics of such halos around Mo and Sn deposits can be found in Dagger (1972). Dunlop and Meyer (1978), Sharp (1978), Sheraton and Black, (1973), Sillitoe and others, (1975), Tischendorf (1973), Wallace and others (1968). The halos described form an innerhalo of Mo, Sn,W, and Bi with outer halos of base metals, U, Hg, and other trace elements. The inner ore halo shows a general succession of Mo, W, Sn, and Bi halos outward from the cusp. Other elements such as Ga, Y, and Nb generally have broader halos farther from the cusp. The host rock in the survey area is a leucocratic alkali rhyolite similar to the rocks associated with known Mo and Sn deposits (Best, 1979, and Rowley and others, 1978). The trace element geochemistry in both objective and subjective rock types is seen to show a small Mo, Sn, and Bi anomaly with larger Be, Y, Nb, Li, and F halos, especially in the northern anomaly. The depleted elements such as Ce, La, Fe, and Al have low concentrations over both anomalies. The behavior of W seems aberrant in the study area in that it tends to be concentrated away from high concentrations of the enriched element anomalies. Further study is necessary to understand nonconformity of W to the general trends. Molybdenum and Sn ores in most major deposits formed shortly after emplacement of the related granitic body (Hesp and Rigby, 1972). The trace element halos in the study area are related to many postvolcanic events. The greatest trace element overprinting and alteration in both objective and subjective rock samples is found in brecciated rhyolite dikes, which cut the main rhyolite flows and other areas of silification and jasperoid formation. The silicified rocks and jasperoid probably represent deposition of silica from areas of major rock-forming mineral destruction, as in argillic alteration (Lindsey and Osmonson, 1978). The presence of stubby rhyolite flows and flow domes formed from viscous lavas, commonly believed to have been erupted from high-level magma chambers, is a good indication of apical granitic bodies. Where these rhyolites contain enrichments in certain elements such as F, Y, Be, Mo, Sn, and Bi and depletions in certain elements such as Fe, Ca, Mg, and Ce, it is possible that the fluids emerged from a highly differentiated source. The large occurrence of lithophysae and vugs indicates high volatile content. The lack of mafic minerals such as biotite and hornblende suggests the proper mineralogy in the postulated parent body is present and that concentration of the ore elements may have occurred. These factors all indicate the conditions were favorable for the formation of a porphyry-type molybdenum deposit at depth. #### CONCLUSIONS Two areas with anomalously high concentrations of certain elements, such as Fe, Be, Bi, Nb, Mo, and Sn and low concentrations of elements such as Fe, Mg, Ca, Ti, Ce, and La were found in the detailed geochemical survey of a regional Mo-Sn anomaly in the southern Wah Wah Mountains. One of these anomalous areas is associated with the regional Mo-Sn anomaly; The other anomalous area is located to the south of the regional anomaly. The geochemistry and geology of these two areas are similar to many known porphyry-type molybdenum and tin deposits. The unaltered rock type of the northern anomaly is a leucocratic alkali rhyolite, which is postulated to be related to a high-level felsic body. The high concentration of the elements Nb, Be, Mo, Sn, Bi, Li, and F; the low concentrations of the elements Fe, Mg, La, Ce, Ti, and Al; the presence of postvolcanic brecciated rhyolite dikes and other brecciated areas; and the absence of certain mafic minerals such as biotite and hornblende in the rhyolite, all indicate the late-stage, highly differentiated residual fluids may have been emplaced near the northern anomaly. The southern anomaly is related to both rhyolites and rhyolitic ash-flow tuffs. The geochemical halos are similar to the northern anomaly except for lower concentrations in Mo, Sn, Bi, and F. Much of the southern anomaly has been extensively bleached which could be related directly to the postulated residual fluids and circulating meteoric hydrothermal fluids around the cooling felsic body. The use of the geochemical suites of elements have shown to be very useful in evaluating the degree of differentiation that may have occurred in a magmatic body at depth. A high degree of differentiation within a felsic body is essential to the formation of porphyry-type molybdenum deposits. Geochemical and geologic evidence suggest that the anomalies may be associated with the emplacement of a highly differentiated magma that may contain economic porphyry-type molybdenum deposits. ## REFERENCES CITED - Bailey, G. B., and McCormick, G. R., 1974, Chemical halos as guides to lode deposit ore in the Park City district, Utah: Economic Geology, v. 69, p. 377-382. - Barakso, J. H., and Gower, J. A., 1973, Geochemical prospecting for tin: Western Mineralogy, v. 46, p. 37-43. - Best, M. G., 1979, Geologic map of Tertiary volcanic rocks in the Mountain Spring Peak quadrangle, Iron County, Utah: U.S. Geological Survey Open-File Report 79-1610, scale 1:24,000. - Best, M. G., and Jeffrey, D. K., 1979, Map showing volcanic geology of the Observation Knoll and the Tetons quadrangles, Beaver and Iron Counties, Utah: U.S. Geological Survey Open-File Report 79-1611, scale 1:24,000. - Boyle, R. W., 1974, Elemental associations in mineral deposits and indicator element of interest in geochemical prospecting (revised): Canadian Geological Survey Paper 74-45, 40 p. - Campbell, D. R., 1978, Stratigraphy of pre-Needles Range Formation ash-flow tuffs in the northern Needle Range and southern Wah Wah Mountains, Beaver County, Utah: Provo, Utah, Bringham Young University Geology Studies, v. 25, part 3, p. 31-46. - Coats, R. R., Barnett, P. R., and Coklin, N. M., 1962, Distribution of beryllium in unaltered silicic volcanic rocks of the western conterminous United States: Economic Geology, v. 57, p. 963-968. - Dagger, G. W., 1972, Genesis of the Mount Pleasant tungsten-molybdenum-bismuth deposit, New Brunswick, Canada: Transaction of the Institute of Mining Metallurgy, v. 81, sec. B, p. B73-B102. - Dolezal, J., Povondra, P., and Sulcek, Z., 1966, Decomposition techniques in inorganic analysis: New York, American Elsevier Publishing Co., Inc., p. 31-45 - Dinlop, A. C., and Meyer, W. T., 1978, Detrital tin patterns in stream sediments and soils in mid-Cornwall: Journal of Geochemical Exploration, v. 10, p. 259-276. - Fleck, R. J., Anderson, J. J., and Rowley, P. D., 1975, Chronology of mid-Tertiary volcanism in High Plateaus region of Utah, <u>in</u> Cenozoic geology of south western High Plateaus of Utah: Geological Society of America Special Paper 160, p. 53-62. - Grant, S. K., 1978, Stratigraphic relations of the Escalante Desert Formation near Lund, Utah: Provo, Utah, Bringham Young University Geology Studies, v. 25, part 3, p. 27-30. - Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and alternating spark emission spectrographic field method for semiquantitative analysis of geologic material: U.S. Geological Survey Circular 591, 6 p. - Groves, D. I., and McCarthy, T. S., 1978, Fractional crystallization and the origin of tin deposits in granitoids: Mineralium Deposita, v. 13, p. 11-26 - Groves, D. I., and Taylor, R. G., 1973, Greisenization and mineralization of Anchor tin mine, northeast Tasmania: Transactions of the Institute of Mining Metallurgy, v. 82, sec. B, p. B135-B146. - Haapala, I., 1977, The controls of tin and related mineralization in the rapakivi-granite areas of southeastern Fennoscandia: Geologiska Foreningensi i Stockholm Forhandlingar (GFF), v. 99, p. 130-142. - Hesp, W. R., and Rigby, D., 1972, The transport of tin in acid igneous rocks: Pacific Geology, v. 4, p. 135-152. - Hopkins, D. M., 1977, An improved ion-selective electrode method for the rapid determination of fluorine in rocks and soils: U.S. Geological Survey Journal of Research, V. 5, no. 5, p. 589-593. - Hosking, K. F. G., 1965a, The search for tin: Mining Magazine, v. 113, no. 4, p. 368-382. - Kerr, P. F., 1946, Tungsten mineralization in the United States: Geological Society of America, Memoir 15, p. 1-69. - Lamarre, A. L., and Hodder, R. W., 1978, Distribution and genesis of fluorite deposits in the western United States, and their significance to metallogeny: Geology, v. 6, p. 236-238. - Lindsey, D. A., and Osmonson, L. M., 1978, Mineral potential of altered rocks near Blawn Mountain, Wah Wah Range, Utah: U.S. Geological Survey Open-File Report 78-114, 18 p. - Mabey, D. R., and Virgin, V., 1980, Composite aeromagnetic map of the Richfield 1° x 2° quadrangle, Utah: U.S. Geological Survey Open-File Report 80-242. - Meier, A. L., 1980, A technique for the decomposition and dissolution of rocks and
determination of lithium, calcium, and magnesium using atomicabsorption spectroscopy: U.S. Geological Survey Professional Paper 1129-I, 5 p. - Miller, W. R., Motooka, J. M., and McHugh, J. B., 1980, Distribution of molybdenum in heavy-mineral concentrates, Richfield 1° x 2° quadrangle, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-1246a, scale 1:250,000. - Motooka, J. M., and Grimes, D. J., 1976, Analytical precision of one-sixth order semiquantitative spectrographic analysis: U.S. Geological Survey Circular 738, 25 p. - Motooka, J. M., McHugh, J. B., and Miller, W. R., 1979, Analyses of heavy-mineral fraction of drainage sediments, Richfield 1° x 2° quadrangle, Utah: U.S. Geological Survey Open-File Report 79-1699. - Mulligan, R., 1971, Lithophile metals and the cordilleran tin belt: Canadian Mining Metallurgy Bulletin, v. 64, p. 68-71. - Olade, M. A., 1980, Geochemical characteristics of tin-bearing and tin-barren granites, northern Nigeria: Economic Geology, v. 75, p. 71-82. - Phillips, W. J., 1973, Mechanical effects of retrograde boiling and its probable importance in the formation of some porphyry ore deposits: Transactions of the Institute of Mining Metallurgy, v. 82, sec. B, p. B90-B98. - Rattigan, J. H., 1963, Geochemical ore guides and techniques in exploration for tin: Australian Institute of Mining Metallurgy, no. 207, p. 137-151. - Rowley, P. D., Lipman, P. W., Mehnert, H. H., Lindsey, D. A., and Anderson, J. J., 1978, Blue Ribbon lineament, east-trending structural zone within the Pioche mineral belt of southwestern Utah and eastern Nevada: U.S. Geological Survey Journal of Research, v. 6, no. 2, p. 175-192. - Rub, M. G., 1972, The role of the gaseous phases during the formation of orebearing magmatic complexes: Chemical Geology, v. 10, p. 89-98. - Sainsbury, C. L., 1969, Tin resources of the world: U.S. Geological Survey Bulletin 1301, 55 p. - Sainsbury, C. L., Mulligan, R. R., and Smith, W. C., 1969, The circum-pacific "Tin Belt" in North America, in Fox, W., (ed.), A second Tech. Conference on Tin: International Tin Council and Department of Natural Resources, Thailand, Bangkok, v. 1, p. 125-148. - Sharp, J. E., 1978, A molybdenum mineralized breccia pipe complex, Redwell Basin, Colorado: Economic Geology, v. 73, p. 369-382. - Shawe, D. R., 1966, Arizona-New Mexico, and Nevada-Utah beryllium belt: U.S. Geological Survey Professional Paper 550-C, p. 206-213. - Shawe, D. R., 1976, Geology and resources of fluorine in the United States: U.S. Geological Survey Professional Paper 933, 99 p. - Sheraton, J. W., and Black, L. P., 1973, Geochemistry of mineralized granitic rocks of northeast Queensland: Journal of Geochemical Exploration, v. 2, p. 331-348. - Sillitoe, R. H., Halls, C., and Grant, J. N., 1975, Porphyry tin deposits in Bolivia: Economic Geology, V. 70, p. 913-927. - Stemprok, M., and Sulcek, Z., 1969, Geochemical profile through an ore-bearing lithium granite: Economic Geology, v. 64, p. 394-404. - Tischendorf, G., 1973, The metallogenetic basis of tin exploration in the Erzgebirge: Transactions of the Institute of Mining Metallurgy, v. 82, sec. B, p. 9-24. - Turneavre, F. S., 1971, The Bolivian tin-silver province: Economic Geology, v. 66, p. 215-225. - VanAlstine, R. E., 1976, Continental rifts and lineaments associated with major fluorspar districts: Economic Geology, v. 71, p. 977-987. - Vlasov, K. A., 1966, Geochemistry and mineralogy of rare elements and genetic types of their deposits, Geochemistry of rare elements, v. 1: New York, Daniel Davey and Company, Inc., p. 205-277 and p. 335-367. - Wallace, S. R., MacKenzie, W. B., Blair, R. G., and Muncaster, N. K., 1978, Geology of the Urad and Henderson molybdenite deposits, Clear Creek County, Colorado, with a section on a comparison of these deposits with those at Climax, Colorado: Economic Geology, v. 73, p. 325-368. - Wallace S. R., Muncaster, N. K., Jonson, D. C., MacKenzie, W. B., Bookstrom, A. A., and Surface, V. E., 1968, Multiple intrusion and mineralization at Climax, Colorado, in Ridge, J. D., (ed.), Ore deposits of the United States, 1933-1967: American Institute of Mining Metallurgical and Petroleum Engineers, v. 1, p. 605-640. | m dd | 926.006
940.900
654.400
937.000 | 35.650
903.900
1,312.000
2,612.000
1,371.000 | 1,538.000
1,214.000
1,387.000
1,339.000
34.180 | 937.300
987.700
890.200
79.530 | 6.400
3.140
17.800
21.640
30.120 | 468.800
29.330
1,088.060
1,040.000 | 928.100
975.700
858.900
835.000
1,359.000 | 925.200
32.860
34.870
49.060 | <pre><.150 23.880 11.220 15.060 5.230</pre> | |----------|--|---|--|--|---|---|---|---|--| | 711 | .4281
.4207
.5657
.3071 | .0242
.3355
.4821
.6562 | .8570
.4579
.5114
.5652 | .7118
.3393
.3516
.0269 | .0063
.0051
.0238
.0195 | .0962
.0281
.4064
.1894 | .4374
.3344
.3479
.3717 | .3069
.0245
.0245
.0276 | .0058
.0410
.0357
.0416 | | 8 i % | 29.01
28.72
28.16
30.39
29.58 | 35.80
28.42
14.79
28.23
31.50 | 25.89
29.12
32.08
31.23 | 29.31
30.45
29.59
3.42 | 36.15
36.15
36.15
36.15 | 26.79
34.40
30.10
32.08 | 28.32
30.77
28.75
30.43 | 29.23
35.69
34.72
34.72 | 34.62 | | % PN | 22222
78127 | 2000
2000
2000 | N-000
N-000 | | ^ | 22.02.
22.02. | 22.22
22.22
24.42 | 0 m m m v | , w w w , | | % G M | . 7098
. 8678
. 5672
. 5591 | .0344
.7065
.2344
.4145 | .8578
.2259
.2045
.2731 | 1.0810
.8059
.7414
.2426
4.4955 | 2.5667
2.5205
.3586
.0301 | .0170
.0963
1.2617
.3187 | .6896
.8895
1.0898
.9170 | .5014
.0197
.0470
.0354 | 13.5252
.0578
.0448
.0147 | | ×
% | 1.40
1.37
1.33
1.41 | 1.96
1.34
2.38
1.60
2.30 | 1.67
2.53
2.44
2.26
1.98 | 1.57 | .10
.04
1.83
1.87 | 1.80
1.86
1.42
2.44
2.44 | 1.49
1.40
1.42
1.38 | 1.46
1.85
1.85 | | | Fe% | 3.7269
3.4548
5.1697
2.9316
2.5612 | .5527
3.0695
2.3588
3.3341
2.3727 | 3.6921
1.0050
1.9509
2.4580
5365 | 4.5512
3.0645
2.8767
.0831 | .0743
.0713
.5933
.4996 | .6198
.5399
3.4388
.9682 | 3.4629
2.9765
3.0751
2.9336
1.0628 | 2.6545
.5617
.5473
.6300 | .1669 4803 6492 1088 | | Ca% | 3.440
3.440
4.590
5.500
3.170 | .700
3.210
1.440
2.470 | 3.220 740 1.310 640 | 3.690
2.970
3.490
37.270 | 37.890
37.810
.900
1.320 | .550
1.180
3.520
.890 | 2.960
2.860
3.440
2.880
1.490 | 2.890
.730
1.910
.540
24.290 | 23.470
.510
.310
.490 | | A L% | 8.4621
9.2089
8.7208
9.1856 | 7.2780
8.6017
8.6403
9.1219 | 9.1489
8.9475
8.4662
8.8780
6.9094 | 7.8440
8.8081
8.9948
6333 | . 1988
7.0554
6.9261
7.3919 | 7.1853
6.9186
8.5117
7.7533 | 6,3509
9,4847
9,0853
9,1115 | 8.5186
7.1284
7.1254
6.1400 | .2095
7.1844
7.2064
7.0354
.2401 | | Longitud | 113 38 8
113 38 6
113 38 6
113 57 42
113 37 36 | 115 57 44
115 38 8
113 57 37
115 37 0
115 36 49 | 113 37 19
113 36 48
113 37 5
113 37 9 | 113 37 7
113 36 28
115 54 30
115 54 5
115 34 7 | 113 34 17
113 34 15
113 34 17
113 56 17
113 35 40 | 113 36 31
113 36 12
113 35 23
113 35 1 | 113 34 46
113 34 24
113 34 24
113 34 14
115 34 43 | 115 34 44
115 37 51
115 37 41
115 38 12
113 33 41 | 113 34 5
113 34 27
113 34 55
113 34 35
113 54 26 | | Laritude | 38 8 40
38 8 40
38 8 31
38 8 31
5 5 | 58 7 40
53 7 22
53 8 24
58 8 3 | 38 8 15
38 7 48
53 7 46
53 7 12
63 6 55 | 38 7 0
58 7 18
58 7 20
38 6 39
58 0 29 | 38 0 27
35 0 23
38 7 50
38 8 20
38 8 48 | 33 8 32
35 8 42
55 7 35
33 7 42
38 7 40 | 34 7 58
55 8 4
35 8 42
39 8 42
58 6 27 | 33 8 40
33 6 54
33 6 15
58 6 21
38 7 37 | 38 7 18
38 6 58
38 6 58
38 6 51
38 5 59 | | alders | 0001
0002
0003
0004
0005 | 0006
0007
0009
0010
0011 | 0012
0013
0014
0016
0017 | 0018
0019
0020
0021
0022 | 0023
0024
0026
0027
0028 | 0029
0030
0032
0033
0033 | 0036
0053
0039
0040
0041 | 6042
6043
6045
0045 | 0649
0650
6051
6052
0053 | 5 7 | E a a a a | 14.92
14.76
16.51
10.28
6.87 | 111.30
13.50
23.37
22.12
23.54 | 34.87
18.82
25.32
22.64 | 18.65
14.69
10.81
<3.00
<3.00 | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 8 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 15.94
13.55
11.40
12.56 | 114.00
1114.00
126.60
3.00 | <pre><3.00 93.04 65.06 77.03 <3.00</pre> | |------------
---|---|--|---|---|--|--|---|--| | Mo pe | <pre><3.80 <3.80 <</pre> | <pre></pre> | <pre></pre> | <pre>< 3.3.80 < 3.3.80 < 3.3.80 < 3.30 < 3.80 4.80 5.80 6.80 <</pre> | <pre></pre> | <pre></pre> | <pre></pre> | <pre></pre> | × × × × × × × × × × × × × × × × × × × | | E d d | 641.5
511.3
479.0
334.3
258.4 | 761.4
315.6
490.8
1,860.0 | 583.7
120.2
320.5
261.3 | 699.6
407.9
583.4
101.6 | 77.9
26.7
764.9
631.5
559.8 | 23.3
434.1
625.1
294.7
851.9 | 302.4
492.3
448.3
252.0 | 282.2
912.9
870.0
858.9 | 92.5
752.7
602.9
728.5 | | Lí ppm | £ 5 5 5 5 | 7177 | 8 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 7 8 7 8 M M | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1300
1300
1400
1400
1400
1400
1400
1400 | 188
200
148 | 116
118
108
57
2 | 4 4 6 5 8
4 4 6 5 8 | | La ppm | 47.60
51.16
48.18
49.05
50.37 | 17.62
49.68
70.54
76.31 | 64.64
79.78
80.33
88.32 | 52.55
52.55
52.65
56.65
56.65
56.65 | 23.73
28.68
7.33
24.29 | 26.20
13.99
48.99
52.10
53.10 | 44.87
47.90
46.45
45.19 | 25.77
22.65
18.19
16.92 | <1.60
23.23
23.65
25.06
18.27 | | 7
E G G | 584
643
558
558 | 546
548
516
748
604 | 898
476
498
630 | 802
664
590
74
130 | 98
104
696
1,082 | 1, 138
502
646
256
436 | 602
608
608
608 | 610
2,280
2,000
2,780 | 168
1,384
1,004
642
356 | | edd no | 5.96
9.48
47.10
9.37 | <pre><2.00 11.58 23.72 10.97 3.36</pre> | <2.00
4.74
<2.00
<2.00
<2.00
<2.00 | 32.97
9.36
8.94
<2.00
<2.00 | <2.00
<2.00
<2.00
<2.00
<2.37 | <pre><2.00 <2.00 8.03 6.38 6.50</pre> | 88.00
88.00
88.00
80.00
80.00
80.00 | 6.60
62.00
62.00
62.59
62.59 | <pre><2.00 2.69 <2.00 <2.00 <2.00 </pre> | | Cr ppm | 4.63
11.06
47.40
12.38 | <pre><1.50 13.73 <1.50 10.87 1.55</pre> | <pre><1.50 7.02 7.02 6.40 <1.50 <1.50</pre> | 75.30
12.03
<1.50
<1.50
<1.50 | <pre></pre> | 2.55
9.36
<1.50
<1.50
7.69 | <pre><1.50 6.99 <1.50 <1.50 3.60</pre> | <pre><1.50 <1.50 3.74 6.01 </pre> | <pre><1.50 8.55 2.33 8.66 </pre> | | edd eg | 84.70
88.30
92.06
78.54 | 68.97
87.25
183.70
175.70 | 143.10
155.30
193.60
184.50
52.49 | 105.70
93.65
72.09
<9.00
<9.00 | <pre><9.00 <9.00 <9.00 63.48 70.81 47.88</pre> | 57.
50.30
84.60
99.16 | 84.48
79.07
77.94
72.10 | 86.23
61.82
49.98
43.93
60.00 | <pre><9.00 84.32 77.50 77.64 <9.00</pre> | | B d d | 00.00.00.00.00.00.00.00.00.00.00.00.00. | 54.81
<50.00
<50.00
<50.00
<50.00 | 00.020 | <pre></pre> | <pre>< \$0.00 < \$0.00 < \$0.00 < \$0.00 < \$0.00 < \$0.00 </pre> | <pre></pre> | <pre></pre> | <pre>< 50.00 < 50.00 < 50.00 < 50.00 < 50.00 < 50.00 </pre> | <pre></pre> | | Edd 98 | 1.7400
1.8100
1.4200
1.7900 | 9.2700
1.7600
2.4300
1.9900 | 2.0300
1.6300
2.3600
2.4300
13.5300 | 2.4100
1.7900
1.6800
<.0400 | <pre><.0400 <.0400 7.1500 6.6600 12.2900</pre> | 12.8200
1.7300
1.8200 | 1.6600
1.9700
1.7100
1.7900
2.2100 | 1.7600
23.7200
20.4700
9.1800 | <pre></pre> | | sample | 0000
00003
00004
00005 | 00006
00007
0010
00110 | 0012
0013
0014
0016 | 0018
0019
0020
0021 | 0023
0024
0026
0027
0028 | 0029
0032
0033
0033 | 0036
0038
0039
0040
0041 | 0042-
0043
0044
0045
0048 | 0049
0050
0051
0052
0053 | | mdd n2 | 58.45
74.48
58.87
58.87 | 39.79
63.39
45.14
105.70
64.90 | 85.48
24.49
74.78
60.98
35.33 | 103.90
65.12
39.07
<1.00 | <pre><1.00 <1.00 <55.62 18.96 <7.11 </pre> | 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 49.84
63.69
42.16
39.80
34.56 | 45.73
60.58
40.64
60.02
23.09 | <pre><1.00 72.43 45.25 55.23 33.63</pre> | |----------|---|---|---|--|--|---
--|--|---| | E 0.0 | 6.53
10.04
8.58
8.58 | 70.39
7.00
19.58
16.25
21.17 | 188
9.39
10.92
88.39 | 13.74
10.01
9.02
4.87
4.87 | <pre><.40 <.40 45.13 80.03 49.32</pre> | 5.97
46.49
8.35
13.22
15.89 | 88.17
8.17
9.10
16.10 | 88.26
88.83
54.65
90.30 | 07.
78.
88.
98.
98.
98.
98.
98.
98.
98.
98. | | E G G | <pre><26.00 <26.00 36.37 <26.00 <26.00 <26.00 </pre> | <pre><26.00 <26.00 <26.00 <26.00 <26.23 <26.00 </pre> | 33.98
<256.00
<26.00
<26.00 | 38.43
<26.00
<26.00
<26.00
<26.00 | <pre><26,00
<26,00
<26,00
<26,00
<26,00
<26,00</pre> | <pre></pre> | 32.89
<26.00
<26.00
<26.00
<26.00 | <pre></pre> | <pre><26.00 <26.00 <26.00 <26.00 <26.00 <26.00</pre> | | e a a | 68.27
65.30
136.60
57.70
60.83 | 15.92
61.79
<1.80
19.74
6.60 | ************************************** | 20.10
58.33
51.00
<1.80 | <pre><1.80 <1.80 14.88 24.95 12.25</pre> | 35.28
23.29
28.34
6.95
4.30 | 70.83
48.56
66.56
57.45 | 44.00
<1.80
1.94
<1.94
<1.80 | <pre><1.80 <1.80 <1.80 <1.80 </pre> | | s. pom | 567.40
598.30
457.20
562.00
588.10 | 11.22
521.30
363.20
602.90
388.40 | 610.80
324.40
344.00
430.40 | 598.60
521.10
499.90
265.20
170.40 | 204.80
211.50
7.64
23.47 | 202.20
16.04
583.40
160.30 | \$07.90
\$70.00
\$25.10
\$11.00
430.50 | 494.30
8.31
42.47
10.05
43.33 | 23.71
5.37
4.56
8.09
68.15 | | eda cs | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre></pre> | <pre></pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre></pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00</pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00</pre> | | Rb ppm | 90.0
110.0
130.0 | 780.0
110.0
240.0
160.0
240.0 | 100.0
270.0
250.0
210.0
410.0 | 80,0
140,0
130,0
1,1 | 20.0
700.0
780.0
610.0 | 20.0
580.0
100.0
200.0
210.0 | 110.0
110.0
130.0
130.0 | 100.0
780.0
750.0
770.0 | 600.0
450.0
590.0
590.0 | | edd dd | <15.00
<15.00
<15.00
<15.00
<15.00 | 40.76
<15.00
<15.00
<15.00 | <15.00 15.00</15.00</15.00</15.00</15.35</td <td><15.00
<15.00
<15.00
<15.00
<15.00</td> <td><pre><15.00 <15.00 29.29 47.74 31.83</pre></td> <td><15.00
33.51
<15.00
<15.00
<15.00</td> <td><15.00<!--15.00</15.00</15.00</15.00</15.00</15.00</15.00</10--></td> <td><pre><15.00 39.39 44.54 45.54 45.58</pre></td> <td><pre><15.00 36.61 32.39 34.74 <15.00</pre></td> | <15.00
<15.00
<15.00
<15.00
<15.00 | <pre><15.00 <15.00 29.29 47.74 31.83</pre> | <15.00
33.51
<15.00
<15.00
<15.00 | <15.00 15.00</15.00</15.00</15.00</15.00</15.00</15.00</10 | <pre><15.00 39.39 44.54 45.54 45.58</pre> | <pre><15.00 36.61 32.39 34.74 <15.00</pre> | | edd d | 976.50
1,076.00
1,127.00
879.70 | 121.90
1,012.00
904.80
1,762.00 | 1,952.00
543.50
684.40
1,213.00
41.73 | 2,105.00
992.50
882.00
<14.00 | <14.00
<14.00
<14.00
64.43
122.60 | 457.60
16.11
1,030.00
104.60
330.90 | 1,012,00
989,60
1,024,00
921,00 | 837.60
<14.00
34.78
<14.00
<14.00 | <14.00
<14.00
125.60
14.96
<14.00 | | . Edd iN | 26.28
26.28
4.80
5.95 | 64.00
8.28
8.28
8.28
9.23
4.00 | 8.21
<4.00
5.57
<4.00
<4.00 | 118.20
7.76
5.60
<4.00 | 00.44.00
6.33
6.33
7.4.00 | 6.58
7.39
7.97
7.97
7.97
8.58 | 8.08
4.67
7.07
6.83 | <pre></pre> | <pre></pre> | | sample | 0001
0002
0003
0004
0005 | 0000
00007
00009
0010 | 0012
0013
0014
0016 | 0018
0019
0020
0021
0022 | 0023
0024
0026
0027
0028 | 0029
0030
0032
0033
0033 | 0036
0038
0039
0040
0041 | 0042
0043
0045
0045 | 0049
0050
0051
0052
0053 | | | | | | | | - | | | | | |----------|---|---|---|--|---|---|---|--|---|--| | B dd e B | 1,972,000
824,500
1,672,000
10,210
28,980 | 872.800
304.200
74.840
41.010
31.830 | 11.330
14.710
10.280
26.020
11.230 | 22.770
11.680
10.610
21.580
9.290 | 8.820
351.600
25.080
201.800
864.500 | 769.800
730.1100
32.060
15.810 | 3.460
6.490
34.470
24.240
24.240 | 23.370
17.290
14.100
12.700
21.700 | 19.880
24.070
33.390
1,025.000 | | | Tix | .2293
.0873
.1862
.0333 | . 4178
. 1691
. 0210
. 0348 | . 0268
. 0403
. 0386
. 0261 | .0256
.0254
.0265
.0231 | 06495 | . 2307
. 2762
. 0361
. 0511 | . 0112
. 0120
. 0234
. 0269 | . 0379
. 0259
. 0359
. 0261 | .0436
.0422
.0422
.3280 | | | SiX | 33.09
30.72
33.98
35.25 | 29.14
31.35
23.73
35.80
34.81 | 34.063 | 36.38
35.38
35.88
36.88 | 3279
3711
3348
2848 | 32.07
29.37
35.28
34.96
35.50 | .84
.60
34.01
35.00 | 35.57
35.64
35.95
36.72
36.72 | 36.14
37.64
46.55
29.65
30.12 | | | % e X | WWWWW
WWWWW | 2 w w
~ | W — W M W | m o o m o | W | , wwv | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | W # W W W | 00 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | ₩ag% | .3920
.2616
.4307
.1340 | . 9019
. 0126
. 0359
. 0412 | .0861
.0266
.0564
.0351 | .0543
.0502
.0230
.0451 | .0303
.6669
.0386
.4197 | . 8150
. 7001
. 0981
. 0322 | 15.5201
14.0240
.1470
.0522 | .0185 | .0242
.0127
.0266
.4950 | | | ×
× | 1.549
1.98
2.00
1.91 | 2000
2000
2000
2000
2000
2000 | 28.28.4
20.08.4
20.08.4
20.08.4 | 2 | 2.10
2.72
1.08 | 2 4 4 6 7 7 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2.03 | 2.03
2.13
2.11
2.09
3.09 | 2.17
2.03
1.64
1.32 | | | Fe% | 1.8890
8119
1.5017
7.6657
7.88 | 3.3616
.0369
.1033
.4258 | .6054
.6173
.5338
.5405 | . 6841
. 4954
. 6269
. 6206 | .6686
.7004
.5561
.6926
3.5351 | 3.0726
3.3279
.5316
.6846 | .1617
.1492
.6413
.6935 | . 5525
. 6134
. 4581
. 5472 | .5701
.6348
.0837
1.6175 | | | C a % | 1.010
4.480
710
.450 | 3.770
.240
.090
.950 | | .610
.230
.470
.450 | 2.250
2.230
2.230
1.860
3.120 | 2.350
2.330
2.40
3.20 | 23.620
23.880
23.880
.460 | 820
870
400 | .240
.170
.290
1.940
2.590 | | | A 1.% | 7.5485
6.9114
7.4463
7.1073
6.9589 | 8.8912
8.2195
11.4591
7.2915
7.2152 | 7.2175
5.9653
6.8601
7.5041 | 6.7665
7.3564
7.2848
6.8806
6.8084 | 6.9210
6.0026
6.6456
6.0661 | 8.8327
8.4401
7.0728
7.2515
6.7090 | .2768
.2951
7.0090
7.0979
6.7699 | 6.8925
6.7404
6.8864
6.3401
7.7880 | 6.6880
6.8025
.2767
8.4209 | | | Longitud | 113 34 2
113 33 48
113 35 7
113 35 9 | 113 34 27
113 36 19
113 36 21
113 35 58
113 35 24 | 113 36 12
113 36 28
113 36 35
113 36 2 | 113 35 28
113 35 24
113 35 13
113 35 27
13 55 55 | 113 34 45
113 34 5
113 35 3
113 34 18
113 34 10 | 113 34 19
113 34 22
113 34 46
113 34 34 | 1113 34 37
1113 34 36
1113 36 40
113 36 40 | 113 35 34
113 36 1
113 35 45
113 35 27
113 35 12 | 113 35 1
113 35 9
113 33 48
113 34 9 | | | Latitude | 388 5 53
388 6 25
6 25
7 26 | 38888
3887
7888
7888
7888
7888
7888
788 | 288 2 2 5 2 2 3 3 4 3 4 3 4 5 4 5 5 5 5 5 5 5 5 5 5 5 | 338 2 3 11 3 8 8 8 3 2 4 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 388 33
4 7 12
8 8 8 4 7 12
8 8 8 4 7 12 | 388 4 4 1 3 3 8 8 8 4 4 4 0 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 38 5 30
38 5 32
38 5 27
38 5 17
38 5 10 | 388 5 45
388 5 45
388 5 43
388 5 43 | 38 5 42
38 7 11
38 8 14
38 10 20 | | | sample | 0055
0056
0057
0059
0059 | 0061
0062
0063
0064 | 0066
0068
0059
0059 | 0071
0072
0073
0074
0075 | 0076
0082
0083
0083 | 0088
0083
0089
0089 | 0093
0094
0095
0098 | 0099
0099
0101
0103 | 0106
0107
0110
0111 | | | | | | | | | | | | | | . | Nb pp | 17.27
5.26
15.10
65.48 | 9-7-7-0 | 115.40
63.53
52.47
122.00
123.60 | 108.40
106.40
122.40
93.97
33.43 | 883
599.803
41.488 | 48.48.38.56
38.65.78
78.78
78.78 | <3.00
<3.00
116.00
122.90
81.93 | 58.59
127.40
46.27
45.74
37.05 | 71.33
85.26
83.00
13.79
9.84 | |--------|---|----------------------------------|--
---|---|--|---|--|--| | Edd OM | × × × × × × × × × × × × × × × × × × × | ~ ~ ~ ~ ~ | × × × × × × × × × × × × × × × × × × × | × × × × × × × × × × × × × × × × × × × | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | WWW WW W W W W W W W W W W W W W W W W | 00000
8
8888
8888
8888
8888
8888
8 | 643,80
643,80
808,80
808,80
808,80 | | eda cw | 400.9
684.9
497.4
632.0 | 36
124
58 | 536.3
256.6
413.3
1,392.0 | 456.7
501.0
648.5
799.8 | 391.0-
468.5
389.4
406.9 | 517.3
630.1
649.3
394.0 | 89.0
103.2
713.7
643.0
562.7 | 470.2
677.2
534.3
638.7
481.2 | 518.8
517.4
50.8
443.4
379.7 | | Li ppm | 7 T & V V V V V V V V V V V V V V V V V V | | 88
7 4 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 8 7 8 8 7 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 | 35
32
13
10 | 4 W 4 Ø 4
W Ø Ø W Ø | 2 8 5 1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 N N N N N | | La ppm | 56.41
31.39
48.99
20.54
23.87 | 2.5
88.4
2.6
6.7 | 22.68
26.17
34.50
24.34
23.80 | 24.77
25.73
19.82
25.83 | 22.52
29.81
28.94
42.48 | 34.64
346.51
27.49
32.40 | <pre><1.60 <1.60 <22.83 <23.63 </pre> | 41.49
20.94
37.65
30.75
45.06 | 29.18
25.88
8.52
52.91
44.40 | | F dd | 248
282
262
1,056
3,920 | 50
44
50
50
80
80 | 2,800
272
1,964
3,360 | 3,120
1,332
3,100
3,98 | 1,390
4,760
2,980
2,980
658 | 752
688
570
3,020
2,300 | 162
174
3,080
2,960
2,640 | 514
3,920
2,760
2,200
2,000 | 974
374
102
628
664 | | E d d | <pre><2.00 <2.00 <2.00 <2.00 <2.00 <2.00 </pre> | 0000 | <pre><2.00 <2.00 <2.00 <2.00 <2.18 </pre> | <pre><2.00 <2.00 <2.00 <2.20 <2.22 <2.20 <</pre> | <pre><2.00 <2.00 <2.00 <2.00 <2.00 <4.4</pre> | 22.14
14.15
<2.00
<2.00
<2.00 | <pre><2.00 <2.00 2.76 2.32 2.09</pre> | <pre><2.00 <2.00 <2.12 <2.00 <2.00 </pre> | <pre></pre> | | mdd rj | 15.16
7.87
12.99
2.01
6.41 | | 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | , , , , , , , , , , , , , , , , , , , | . 4 . 2 8 3 4 . 4 . 4 . 8 8 3 4 . 4 . 4 . 8 8 3 4 . 4 . 4 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . | 10.47
14.14
7.13
7.08
<1.50 | <1.50<1.50<7.00<6.97<7.45 | 5.62
9.52
8.93
9.15 | 8.60
<1.50
<1.79
<1.50
5.76 | | Ce 000 | 107.60
54.24
96.59
77.74
64.39 | 20086 | 60.18
83.58
102.00
73.92
64.63 | 85.
69.84
64.23
63.94
63.86 | 84,35
73,18
79,54
79,05
84,58 | 64.11
64.00
90.82
96.18 | <pre><9.00 <9.00 63.07 65.38 97.73</pre> | 93.42
63.98
99.76
100.60 | 93.11
71.51
25.53
95.03
75.06 | | Bi ppm | <pre></pre> | 00000 | <pre></pre> | <pre></pre> | <pre>< 50.00 < 50.00 < 50.00 < 50.00 < 50.00 < 50.00 </pre> | <pre>< 50.00 < 50.00 < 50.00 < 50.00 < 50.00 </pre> | <50.00
<50.00
<9.38
59.62
51.89 | <pre>< 50.00 54.30 < 50.00 < 50.00 < 50.00 < 50.00 </pre> | <pre></pre> | | Be ppm | 1.5900
1.5900
1.3000
8.2400
9.7000 | | 8.4600
12.8800
7.0900
20.1400
9.8500 | 8.4800
9.3800
11.3000
9.3100
5.7700 | 10.8800
13.1100
10.3300
10.6800 | 1.6700
1.6300
11.9900
9.4800
9.5600 | <.0400
<.0400
11.2300
11.5000 | 8.4800
9.8500
10.3800
11.3400
9.2100 | 9.8000
8.1200
.2800
1.9900 | | sample | 0055
0055
0057
0050
0050 | | 0066
0067
0068
0069 | 0071
0072
0073
0074
0075 | 0076
0080
0082
0083 | 0600
0600
0600
0600 | 2600
9600
5600
7600
£600 | 0099
0101
0103
0104 | 0106
0107
0110
0111 | | Zn ppm | 43.75
22.26
50.14
32.68
34.12 | 74.67
2.69
3.18
31.30
58.35 | 30.55
30.86
24.57
59.28
60.58 | 58.97
37.59
42.27
52.13 | 59.01
67.32
43.15
69.24 |
63.00
54.00
54.00
74.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00
75.00 | 10.66
10.85
62.60
42.22
38.31 | 23.22
47.23
40.50
50.33
38.33 | 57.07
27.90
27.90
54.12
60.92 | |-----------------|---|---|--|---|---|---|--|--
--| | ۲
و م
و م | 8.05
10.66
6.47
75.60 | 8.10.80
13.49
36.061 | 96.18
59.44
75.09
74.77
95.23 | 96.76
58.70
107.60
95.55 | 47.73
50.74
49.28
44.15 | 7.80
8.40
60.66
69.76 | <.40
<.40
90.31
86.47
72.82 | 58.00
96.12
74.98
64.75 | 59.09
56.78
2.40
18.35 | | E 0 0 | <pre><26.00 <26.00 <26.00 <26.00 <26.00 <26.00 </pre> | 30.47
<26.00
<26.00
<26.00
<26.00 | <pre></pre> | <pre></pre> | <pre><26.00 <26.00 <26.00 <26.00 <31.60</pre> | <pre></pre> | 00.92>
00.92>
00.92> | 00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92 | 00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00.93
00 | | V ppm | 30.20
9.51
21.96
3.19 | 57.31
15.53
11.97
6.18 |
 | 61,280
61,80
61,80
61,80
80 | <pre></pre> | 64.18
59.07
2.54
61.80 | ************************************** | 71.31
71.80
71.80
83.68
868 | 3.07
17.98
5.58
3.14
48.13 | | edd iS | 525.10
242.30
335.30
2.20
6.70 | 511,70
210,10
162,30
25,31
7,13 | 5.62
6.95
10.04
34.19
2.73 | 5.85
5.59
7.65
17.88 | 4.07
1,621.00
5.66
924.00
569.00 | 888
87.85
64.28
64.28
64.28 | 26.58
32.76
11.70
6.82 | 9.07
3.30
5.00
6.01 | 4.86
3.84
33.33
379.40
567.40 | | sn ppm | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre></pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <20.00
<20.00
<20.00
35.35
35.35 | 00.00
05.30
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05.00
05 | <pre></pre> | | Rb ppm | . 80.0
140.0
150.0
630.0 | 130°0
40°0
860°0
130°0
130°0 | 750.0
630.0
930.0
930.0
930.0 | 660.0
8830.0
780.0
790.0 | 560.0
200.0
520.0
3390.0 | 160.0
130.0
600.0
530.0
50.0 | <pre></pre> | 570.0
680.0
570.0
580.0 |
570.0
510.0
10.0
100.0 | | Pb ppm | <15.00
<15.00
<15.00
37.76
41.70 | <15.00
<15.00
22.52
18.38
40.23 | 35.08
37.52
27.97
39.64
39.89 | 34
34
37.04
37.04
37.07
37.07
37.07 | 37.92
20.98
22.90
18.44 | <pre><15.00 <15.00 23.51 25.61 34.60</pre> | <pre><15.00 <15.00 <49.23 44.94 37.73</pre> | 28.10
53.32
37.20
46.93 | 47.48
41.42
<15.00
<15.00 | | E d d | 618.40
254.70
497.50
51.72 | 843.40
152.40
96.94
47.64 | <14.00
45.79
31.98
<14.00
<14.00 | <14.00
 18.34
 4.00
 <14.00
 61.62 | <14.00
47.46
288.50
30.10
866.40 | 727.60
747.70
<14.00
<14.00 | <14.00 | 28.57
21.34
138.80
81.06
<14.00 | 66.45
44.59
100.10
592.00 | | N i ppm | 00.4>
00.4>
00.4>
00.4> | 13.39 | <pre></pre> | 77.00
74.00
74.00
75.54
75.00
75.00 | 5.75
6.18
<4.00
73.81 | 10.51
10.18
8.77
<4.00 | 64.00
64.00
64.00
74.00
74.00 | 7 | <pre></pre> | | aldmes | 0055
0056
0059
0059
0060 | 0061
0063
0064
0065 | 9900
9900
9900
9900
0200 | 0071
0072
0073
0074
0075 | 0032
0032
0033
0033 | 00086
000837
000830
000830 | 0093
0094
0095
0096
0096 | 0098
0099
0101
0103 | 0106
0107
0110
0111 | | B og e | 915.900
855.400
211.800
847.500 | 2.250
369.900
206.600
4.000
50.590 | 936.900
124.400
873.800
788.000 | 1,391,000
1,396,000
1,411,000
1,111,000 | 900.900
957.200
877.900
894.800 | 1,287,000
898,600
978,200
1,158,600 | 946,500
953,800
24,250
926,800
888,900 | 884,400
1,309,000
4,370
4,150 | 19.310
<.150
2.810
192.700
65.410 | |--------------|---|--|---|---|--|--|--|--|---| | Tix | .3794
.3038
.3945
.4014 | . 3363
. 3363
. 3939
. 0098 | . 2563
. 1278
. 3188
. 1960 | ,4057
,4603
,4367
,4357 | ,3922
,1962
,2236
,2525 | . 5983
. 3852
. 2692
. 7255
. 323 | .2847
.2556
.0344
.3633 | .0016
.3733
.0649
.0046 | .0109
.0011
.0032
.0152 | | Six | 28.10
28.31
25.50
28.40 | 240
3045
1875
1.68 | 30.51
32.96
12.83
30.04
29.16 | 30.46
30.85
30.44
31.87 | 31.00
30.94
28.54
29.69 | 29.59
29.56
29.56
27.95
8.75 | 30.38
28.38
9.46
29.29 | 20.27 | 1.97
34.75
35.85
25.85 | | N e N | 7700V
7400C | , , , w | 00000
00000 | 800 M M 80 | WWWW

0004
0004
0004 | W N N N | 00 V N N | VV-VV | | | % BW | 1.5102
1.1723
2.9852
1.0734 | 12.8250
.0373
.0066
12.8002 | . 8730
. 0720
. 8813
. 9854 | .3274
.2919
.4096
.5512 | .5089
.5162
.5065
.5378 | .3095
.5175
.4445
1.0046 | .9103
1.0602
1.0757
1.0277 | 14,7296
.5511
.3865
.4802 | 3.6669
13.7858
13.7344
.0682 | | * | | . 02
. 32
2.46
. 01 | 1.44
2.26
7.78
1.61 | 2.50
2.57
2.57
2.57
2.02 | 1.47 | 2 | 1.50
1.43
1.40
1.40 | , , , , , , , , , , , , , , , , , , , | 2.09
2.09
7.7.1 | | بر
ف
س | 3.2475
3.4414
4.7408
3.2854
.2891 | 2439
2.8615
.1231
.2756
.4295 | 2.9450
.6836
3.2456
2.3618
2.563 | 1.6764
1.8401
1.7448
1.8925 | 3.2426
2.1086
2.4568
2.3808
2.1679 | 2.5012
3.1394
2.6188
5.1071 | 2.3246
3.0418
.5513
3.3945 | 3.2533
3.2533
5.468
1294 | .1775
.0344
.1692
.0231 | | , e) | 3,190
3,530
3,400
3,740
24,520 | 23.080
.290
.110
.22.830 | 2.900
610
1.170
3.090
2.240 | | 2.730
2.680
3.210
2.920 | 1.930
3.240
3.520
4.440
2.920 | 2,840
3,130
30,840
2,970
2,710 | 24.610
2.090
2.090
39.990
25.020 | 34.790
24.490
.440
1.320 | | ALX | 9.1176
8.9990
6.9834
8.2424
1385 | .2414
9.8832
13.2280
.3304
7.2850 | 9.3272
6.9912
9.1015
8.0497
9.2820 | 8.5292
8.5626
8.6626
8.7525
8.0058 | 9,0392
9,5959
8,7419
9,0883 | 8,7641
9,1933
9,1049
9,1388
8,1906 | 9,3403
9,0117
8828
8,9535
8,742 | 8.6206
8.0579
8.0579
.1369 | .3118
.1186
.1490
4.0307
9.5910 | | Longitud | 113 34 17
113 34 30
113 33 16
113 34 20
113 33 19 | 113 33 21
113 33 45
113 32 32
113 32 39 | 113 34 46
113 34 46
113 32 39
113 33 28
113 33 28 | 113 33 18
113 32 40
113 32 40
113 32 42
113 32 42 | 113 32 35
113 32 35
113 33 27
113 33 27
13 33 27 | 113 33 27
113 33 2
113 33 9
113 33 2 | 113 33 6
113 33 6
113 32 50
113 33 11 | 113 32 39
113 33 12
113 32 36
113 32 51
13 33 4 | 113 32 43
113 32 38
113 32 55
113 33 0 | | Latitude | 38 10 14
38 9 49
38 10 5
38 9 32
38 9 25 | 388 9 21
388 9 21
38 9 9 21
38 9 9 24 | 38 9 6 8 38 1 10 38 1 17 1 17 1 17 1 1 1 1 1 1 1 1 1 1 1 1 | 388 1 40
388 2 20
388 2 20
388 2 20
388 2 20 | 20000000000000000000000000000000000000 | 33 3 3 3 3 3 3 3 3 3 3 4 1 1 5 5 4 1 4 8 8 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 | 338 5 4 35 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 33 5 5 5 6 5 1 3 8 8 6 5 1 5 5 6 5 5 5 6 5 5 1 5 5 6 5 5 1 5 5 6 5 5 1 5 6 5 5 6 5 5 1 5 6 5 6 | 38 6 47
38 7 58
38 8 14
38 8 30
38 8 28 | | sample | 0113
0114
0115
0116 | 0118
0119
0120
0121 | 0123
0124
0127
0128
0129 | 0130
0131
0132
0133 | 0137
0138
0139
0140 | 0142
0143
0144
0145 | 0148
0148
0149
0150 | 0152
0153
0154
0157 | 0159
0160
0161
0162
0163 | | | | | | | • | . . | | | | |------------------|---|--|---|--|--|---|--
--|--| | mcg qN | 20000000000000000000000000000000000000 | 72.00
72.00
73.00
73.00
73.00
73.00
73.00
73.00
73.00
73.00 | 5 3 5 9 E
8 5 5 6 9
5 6 6 3 6
6 7 E | 24.44
24.44
24.44
24.44
24.44
24.44 | 2000 8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 14.05
14.05
14.95
14.97
14.97 | 10.337
21.10
18.60
14.89 | <pre><3.00 15.62 15.62 10.62 <3.00 <3.00</pre> | <3.00
<3.03
<3.03
<3.03
28.64
22.50 | | м
е
а | <pre><3.80 <3.80 <3.80 <3.80 <3.80 <3.80 <3.80 </pre> | 00000000000000000000000000000000000000 | <pre></pre> <pre><</pre> | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | , , , , , , , , , , , , , , , , , , , | <pre><3.80 <3.80 <40 <40 <40 <40 <40 <40 <40 <40 <40 <4</pre> | <pre></pre> | <pre><3.80 <3.80 <3.80 <3.80 <3.80 <3.80 <3.80 </pre> | | A
F
G
G | 442.4
401.5
980.9
636.0
249.4 | 618.2
23.3
12.6
162.1
374.3 | 254.5
355.8
293.4
293.3 | 375.6
273.6
371.6
332.8 | 188.4
409.1
350.6
338.4 | 304.4
533.0
529.1
369.7 | 474.7
275.4
396.2
233.7
251.7 | 191.4
222.5
649.8
231.7
29.4 | 96.9
15.9
19.6
32.2 | | Li ppm | 2001
2001
2001 | M C C A M | 1 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 6 7 5 6 | 118
128
177 | W 0 + 0 W | 113
113
22
22 | 13
15
22
20 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ~ m m m m | | La ppm | 49.26
57.73
32.57
45.46
18.29 | 22.01
28.45
33.52
36.64 | 49.60
42.84
42.06
37.50 | 78.57
75.33
79.33
76.33 | 41.59
40.58
40.58
48.68 | 69.12
48.05
49.25
52.88
51.90 | 49,40
40,20
21,20
47,03
39,14 | <pre><1.60 39.40 27.39 22.94 <1.60</pre> | 19.03
<1.60
19.94
3.91
6.80 | | F pp ñ | 776
870
874
674
756 | 210
200
2012
203
812 | 536
276
802
656
674 | 592
578
518
744
662 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 606
750
786
996 | 294
744
360
850
822 | 1
6
6
6
6
6
7
6
7
8
8
8 | 124
88
144
276
594 | | E C C D D | 10.88
11.37
47.78
9.70
<2.00 | <2.00
4.88
<2.00
<2.00
<2.00 | 62.50
6.35
22.70
8.35
9.89 | 2.67
2.67
2.67
2.69
5.69 | 9.16
9.05
9.05
8.52
6.00 | 3.21
7.69
9.15
31.38
<2.00 | 9, 20
10,09
(2,00
11,57 | <2.00
7.86
<2.00
<2.00
<2.00 | <pre><2.00 <2.00 <2.00 <2.00 <2.00 <2.00 <2.00</pre> | | ני ס | 13.59
<1.50
136.10
<1.50
432.80 | <pre><1.50 38.58 14.39 </pre> <1.50 < 1.50 | 6.54
8.74
7.00
<1.50 | 7.08
3.08
3.08
2.92
2.3 | 10.48 4.05 2.79 5.87 | 4.76
4.15C
6.16
9.40
4.39 | 5.59
1.50
13.88
14.38 | 12.50
12.95
8.95
1.50
1.50 | 7 <1.50
76.58
76.58
79.67 | | Edd & J | 36.70
78.09
46.36
84.53
<9.00 | <pre><9.00 69.23 37.41 <9.00 65.65</pre> | 83.45
94.73
86.21
79.03 | 195.10
187.90
183.90
192.60 | 85.45
82.74
85.92
82.08
200.30 | 170.70
79.81
86.31
116.70 | 83.16
80.51
<9.00
73.50
79.99 | < 9.00
81.44
69.89
< 9.00
< 9.00 | 00.65 | | Edd ; o | <pre>< \$0.00 < \$0.00 < \$0.00 < \$0.00 < \$0.00 < \$0.00 </pre> | <pre>< 50.00 < 50.00 < 50.00 < 50.00 < 50.00 < 50.00 </pre> | <550.00
<550.00
<550.00
<550.00
<550.00 | <pre></pre> | <pre></pre> | <pre>< \$0.00 < \$0.00 < \$0.00 < \$0.00 < \$0.00 < \$0.00 </pre> | <pre>< \$0.00 < \$0.00 < \$50.00 < \$50.00 < \$50.00 < \$50.00 </pre> | <pre><\$0.00 <\$0.00 <\$0.</pre> | <pre><50.00 <50.00 <50.00 <50.00 <50.00 <50.00</pre> | | ве рря | 1.7760
1.6900
.9606
1.6025 | <.0400
1.4700
.2600
<.0400
7.8200 | 1,8400
8,9500
1,8500
1,8900 | 2.4800
2.4800
2.1500
2.1500
2.490 | 1.9900
1.9600
1.8000
1.7000
2.6700 | 2.4199
1.84999
1.3099
2.200 | 1.8003
1.7500
<.0400
1.8246
1.7800 | <pre>< 0400 2.2800 2.0200 < 0400 < 0400</pre> | <.0400
<.0400
<.0400
1.6900 | | s and C e | 0113
0114
0115
0116 | 0113
0120
0121
0122 | 0123
0123
0128
0128 | 0130
0131
0132
0133
0158 | 0135
0135
0159
0140 | 0144
01443
01443
01443
01443 | 0142
0148
0150
0150 | 0152
0153
0154
0157
0158 | 0159
(160
0161
0162 | | Zn ppm | 76.30
52.53
61.43
47.29
<1.00 |
<1.00
28.70
.50
28.45
22.64 | 55.89
48.90
56.54
45.41 | 47.21
48.43
61.26
45.13 | . 95.
95.
95.
96.
96.
97.
98.
98.
98.
98.
98. | 55.83
48.64
43.74
79.21
47.38 | 47.26
56.83
32.00
67.96 | 24.98
61.10
38.15
<1.00 | 23.17
<1.00
28.32
1.27
2.43 | |-------------|--|--|---
---|---|--|---
--|---| | Edd > | % 4 4 % % % % % % % % % % % % % % % % % | 5.25
2.87
4.80
4.40
13.80 | 7.91
19.88
7.60
8.92
7.33 | 17.61
16.79
14.92
14.73 | 7.34
8.63
9.62
8.14 | 16.14
5.67
10.51
8.60
20.20 | 8.02
7.29
11.98
12.12 | 7 | 07.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | | # Q Q | <pre><26.00 <26.00 34.93 31.03 <26.00</pre> | <26.00
27.32
26.00
<26.00
<26.00 | <pre><26.00 <26.00 30.04 <26.00 <26.00 <26.00 </pre> | <pre><26.00 <26.00 <26.00 <26.00 <26.00 <26.00 <26.00 </pre> | 26.71
<26.00
<26.00
<26.00
<26.00 | 256.00
626.00
626.00
626.00
626.00 | <pre></pre> |
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00°92°
00 | <26.00
<26.00
<26.00
<26.00
<26.00 | | ۸
۳
۵ | 55.16
54.70
88.20
57.87 | <1.80
93.20
50.24
23.29
8.64 | 63.78
<1.80
59.97
39.63
55.42 |
80
80
80
80
80
80 | 70.35
48.08
49.84
47.70
<1.80 | <1.80
64.33
51.34
78.02
6.36 | 64.35
70.08
<1.80
70.35
62.31 | <1.80
47.30
2.63
20.10
<1.80 | <1.80 1.80</1.80</1.80</1.90</1.52</td | | Sr ppa | 601.10
526.90
381.10
493.50 | 47.86
109.70
425.90
67.48
16.78 | 566.10
31.12
521.90
494.10
513.50 | 285.30 .
357.50
177.90
262.40
322.00 | 508.40
536.30
521.20
542.90
408.10 | 439.90
542.10
488.40
1,167.00
98.98 | 510.70
554.30
101.40
534.60
519.50 | 32.75
455.30
165.40
140.20
29.55 | 129.30
19.16
19.12
126.00
191.00 | | s n | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00</pre> | <20.00
<20.00
<20.00
<20.00
<20.00 | <pre></pre> | <pre><20.02
<20.00
<20.00
<20.00
<20.00
<20.00</pre> | <20.00
<20.00
<20.00
<20.00
<20.00 | <20.00
<20.00
<20.00
<20.00
<20.00 | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre><20,00 <20,00 <20,00 <20,00 <20,00 <20,00 <20,00 </pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00</pre> | | Rb pom | 1100.00 | 10.0
40.0
20.0
6.1 | 130.0
290.0
170.0
150.0 | 280.0
260.0
270.0
280.0
280.0 | 120.0
130.0
130.0
230.0 | 200.0
130.0
140.0
70.0 | 140.0
130.0
110.0 | 20.01
120.01
20.02
1.0 | 20.0
20.0
20.0
70.0 | | edd dd | <pre><15.00 <15.00 <15.00 <15.00 <15.00 </pre> | <15.00 15.00</15.00</15.00</15.00</15.00</15.00</15.00</td <td><15.00
15.83
<15.00
<15.00
<15.00</td> <td><15.00<!--15.00</15.00</15.00</15.00</15.00</15.00</15.00</td--><td><pre></pre> <pre></pre> <pre><</pre></td><td><pre></pre></td><td></td><td><pre></pre></td><td><pre><15.00 <15.00 <15.</pre></td></td> | <15.00
15.83
<15.00
<15.00
<15.00 | <15.00 15.00</15.00</15.00</15.00</15.00</15.00</15.00</td <td><pre></pre> <pre></pre> <pre><</pre></td> <td><pre></pre></td> <td></td> <td><pre></pre></td> <td><pre><15.00 <15.00 <15.</pre></td> | <pre></pre> <pre><</pre> | <pre></pre> | | <pre></pre> | <pre><15.00 <15.00 <15.</pre> | | ق
م
م | 1,157.00
858.40
869.20
930.80
<14.00 | 366.60
754.00
608.30
<14.00
73.80 | 932,90
43,93
848,10
755,70
813,10 | 515.20
623.80
524.60
645.70
603.50 | 816.90
950.00
794.10
931.20 | 1,084.00
987.70
901.40
2,017.00
501.70 | 923.80
880.40
442.60
1,220.00 | <14.00
925.10
53.36
<14.00
<14.00 | <14.00
<14.00
<14.00
52.37
96.13 | | E QQ . | 9.76
9.72
55.56
8.15
254.70 | <pre><4.00 16.74 <4.00 42.86 <4.00 <4.00</pre> | 5.48
6.20
9.47
7.33 | 00.4> | 82.88
7.34
7.39
7.39 | <4.00
5.87
5.12
5.12
28.20
4.86 | 6.12
9.30
<4.00
9.98 | 8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° | 00.4.00
4.00
4.00
4.00
6.4.00 | | sample | 0113
0115
0115
0116 | 0118
0119
0120
0122 | 0123
0124
0127
0128
0129 | 0130
0131
0132
0133 | 0133
0133
0140
0141 | 0142
0143
0144
0145 | 0147
0148
0149
0150 | 0152
0153
0154
0157 | 0159
0160
0161
0162 | | Ва ррж | 28.820
9.600
370.600
<.150 | 1,251,000
1,310,000
1,367,000
946,700 | 11,390
19,860
10,850
17,210
857,100 | 1,383,000
1,386,000
312,300
1,416,000 | 1,302,000
23,390
92,760
14,719
23,080 | 14,930
1,325,000
1,538,000
895,200
925,300 | 897.600
881.600
898.200
939.000 | 875.400
908.700
979.200
911.200
913.400 | 977.000
998.500
951.700
17.790
959.200 | |----------|---|--|---|---|---|---|---|--|---| | Τίχ | .0062
.0017
.0876
.0002 | ,3519
,3947
,4136
,3355 | . 0467
. 0490
. 0472
. 0495 | . 44358
. 4403
. 0577
. 6859 | 4362
03302
0655
0332 | .0490 .7844 .3464 | . 1908
. 4129
. 3206
. 2866 | .3081
.3350
.3439
.2756 | .3079
.3159
.2987
.0471 | | S i X | 32.71
43
18.88
007 | 32.62
30.10
30.74
29.33 |
34.75
35.20
36.10
31.41 | 37.51
34.76
32.97
31.69 | 31.91
34.04
34.74
25.83 | 35.55
31.85
28.94
31.06 | 29.70
31.78
29.18
31.28 | 29.01
30.09
29.01
29.27 | 29.42
30.16
31.35
39.68
29.01 | | Ne N | | www.ww | 0 / 8 0 8 | W W V W W | N | 2000
2000
2000
2000
2000
2000
2000
200 | % % % % % % % % % % % % % % % % % % % | NNT NN
********************************* | 2.22 | | Mg% | 2.9657
13.2086
.0259
12.9890
13.2224 | .3658
.1664
.2785
.4047 | .0456 | . 2899°
. 1933
. 0770
. 0807
. 255 | . 2864
. 0076
. 0086
. 0114 | | 1.0151
1.0845
9293
.5057 | 1.1736
1.3626
6813
8932 | .5365
.5697
1.2574
.0147 | | х
% | ^L ^ | 22.84 | 2.20
3.25
2.10
2.10 | 2.33
4.47
5.43
7.43
7.43
7.43
7.43
7.43
7.43
7.43
7 | 2.37
2.00
2.00
2.07 | 20.05 |
 | 244
444
6444
6444 | 1.58 | | Fe % | . 4297
. 2834
. 9929
. 0517
. 0430 | 1.5609
1.5897
1.6409
2.9863 | .6295
.6771
.1770
.6068 | 1.6220
1.6824
.3420
1.8219
2.1726 | 2.0447 | .6411
2.0409
1.9246
3.0518
2.8321 | 2.4598
3.2223
2.9855
3.0150
3.1308 | 3.0915
2.9900
2.9997
2.8390
3.4008 | 2.8829
2.6906
2.5479
2.5479
2.9043 | | C a % | 7.680
23.510
.480
24.700
24.830 | 1.090
2.740
8.890
3.120 | 3000 1 1 2000 1 2 | 2.500
2.990
1.790 | 1000 | , 450
, 2 . 980
, 2 . 980
, 4 . 0 | 2.180
2.120
2.500
2.480
2.480 | 2,720
2,910
2,980
3,390 | 2.760
3.340
2.830
.090
2.270 | | ALX | .3086
.1112
11.6020
.0765 | 8.4785
9.1216
9.1860
8.4696 | 6.5695
7.0796
6.8378
7.1461
7.4351 | 8.2510
8.0098
5.1715
7.8837
8.8149 | 7.7953
8.9087
8.8661
9.0804
7.3565 | 6.7596
8.6757
8.0428
8.6057
9.2521 | 9.1699
8.7619
8.1694
9.1151 | 9.0252
8.9641
8.4854
9.1786 | 8.8898
9.0802
9.3773
7.4609
8.3907 | | Longitud | 113 33 30
113 33 25
113 33 25
113 33 36
113 32 58 | 113 33 40
113 33 35
113 33 50
113 34 0 | 113.34 11
113.34 43
113.34 38
113.34 27
113.34 27 | 113 34 25
113 34 25
113 33 44
113 34 12
113 35 8 | 113 35 6
1113 35 43
113 35 43
113 35 35 | 113 36 11
113 35 14
113 39 33
113 39 5 | 113 39 44
113 38 44
113 38 24
113 38 20
113 38 21 | 113 38 44
113 38 30
113 38 54
113 37 53
113 38 0 | 113 38 26
113 37 58
113 38 22
113 38 39
113 37 44 | | Latitude | 38 8 13
38 7 54
38 8 28
38 7 24
38 7 24 | 38 1 41
38 2 5
38 2 53
38 2 53
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 38 3 2 4 5 3 4 4 6 4 5 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 38 1 50
38 1 41
38 1 9
38 1 9 | 38 1 0
38 2 2 2
38 2 2 2 2
38 2 1 3
3 4 1 4 | 38 2 1
38 1 32
38 1 32
38 1 32
38 1 32
38 1 24 | 388 1 26
388 1 1 4
388 1 34
1 4 4 | 38888
2888
2888
2888
2888
2888
2888
288 | 38 38 3 48 38 3 38 3 38 3 38 3 38 3 38 | | sample | 0164
0155
0166
0167 | 0201
0202
0203
0204
0205 | 0208
0207
0208
0209 | 0211
0213
0213
0215 | 0217
0220
0221
0221 | 0223
0224
0226
0226 | 0228
0229
0230
0231 | 0233
0234
0235
0236
0237 | 0238
0239
0240
0241 | | Nb ppm | 8 .77 8 8 .77 8 .00 8 .77 8 8 | 20.00
20.68
20.93
13.16
27.06 | 67.68
79.93
72.08
84.18 | 28.97
10.35
16.35
76.55
76.55 | 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 8 4 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 6.00
14.00
17.00
17.00
14.00
14.00
14.00
14.00 | 13.00
11.00
12.00
12.01
13.70
13.70 | 10.84
11.12
9.05
84.00 | |----------------------------|---
--|--|--|---|---|---|--|---| | A 0 0 E | 16.63
<3.80
<3.80
<3.80
<3.80 | <pre></pre> | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 44.7
43.80
43.80
43.80 | 6 4 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <pre></pre> <pre>< 33.80 < 33.80 < 33.80 < 33.80 </pre> | | E
E
G
G
C
M | 637.2
157.4
24.4
38.5
40.3 | 237.2
344.5
134.6
319.8
621.7 | 523.3
417.9
45.8
600.7
85.5 | 51.7
73.2
762.1
39.2
528.4 | 415.5.
50.8
49.1
205.6
853.7 | 538.1
537.0
231.4
441.4
514.0 | 372.6
309.4
419.0
317.7
440.1 | 408.0
415.4
454.9
393.1 | 376.2
369.0
506.3
22.1
344.3 | | Li ppm | мм Ф м м | 25
11
11
12
12
11 | 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 77
77
88
09 | 5
11
10
10
10
10
10
10
10
10
10
10
10
10 | 288
11388
11388 | 7 0 0 m 0 | 71
10
11
12 | | La ppa | <pre><1.60 20.09 21.91 <1.60 </pre> | 89.38
83.17
94.13
49.10 | 38.14
29.22
29.14
36.14
85.16 | 86.98
79.64
27.70
65.12
84.80 | 80.39
<1.60
15.93
<1.60
38.64 | 39.90
85.17
83.03
41.10 | 50.32
38.63
50.42
42.09
41.07 | 40.50
46.73
44.30
47.72
47.22 | 4 | | F
G
G | 150
98
2,620
124
76 | . 574
668
488
676
676 | 2,060
3,260
110
2,460
404 | 360
410
104
244
566 | 832
2,440
1,598
2,480
2,040 | 2,820
556
376
550
550 | 532
688
738
748 | 578
766
514
644
662 | 688
630
660
1,774 | | Eda no | 3.01
<2.00
2.04
<2.00
<2.00 | 00 4 4 W W W W W W W W W W W W W W W W W | <pre></pre> | 2.57
<2.00
<2.00
<2.00
<2.00 | 6.75
<2.00
<2.00
<2.00
<2.00 | <pre></pre> | 11.38
3.11
8.55
8.00
6.00 | 10.96
9.27
9.48
8.14 | 8.63
7.85
11.85
62.00
10.02 | | Cr ppa | <pre></pre> | 2 | 9.18
10.94
11.50
2.05 | 2.41
<1.50
<1.50
1.92 | 6.29
6.29
6.29 | | 8 3 3 3 4 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 | 6 4 4 5 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 6 8 6 8 6 | 4.58
5.84
12.58
4.24 | | ce pp | <pre><9.00 <9.00 30.84 <9.00 <9.00 </pre> | 187.00
167.20
199.50
86.56 | 999.83
999.65
59.23
72.32 | 191.30
171.50
51.80
171.70 | 180.20
12.20
12.29
69.00 | 100.90
193.90
189.10
83.18 | 87.69
78.73
91.95
85.66 | 83.81
76.27
72.36
79.37
82.00 | 78.30
76.10
80.62
<9.00
92.60 | | Bi ppm | <pre><> 50.00 <> 50.00 <> 50.00 <> 50.00 <> 50.00 </pre> | <pre></pre> <pre>< \$0.00 < \$0.00 < \$0.00 < \$0.00 < \$0.00 < \$0.00 </pre> | | Be DD | .5900
<.0400
1.2100
<.0400 | 2.2800
2.2400
2.3900
1.8700
2.8800 | 11.1100
94.3900
19.0100
10.5900
2.2300 | 2.3800
2.8000
1.3400
2.1800
2.0900 | 2.2700
3.6300
3.5700
3.0100 | 10.4000
2.4600
2.3900
1.8400 | 1.8300
1.7900
1.8800
1.8500 | 1.8300
1.7000
1.7400
1.7500 | 7.7700
1.7300
1.9100
1.9600 | | sample | 0164
0165
0166
0167 | 0201
0202
0203
0204
0205 | 0206
0207
0208
0209
0210 | 0211
0212
0213
0215 | 0217
0219
0220
0221
0221 | 0223
0224
0225
0226
0226 | 0228
0229
0230
0231
0231 | 0233
0234
0235
0235
0235 | 0238
0239
0240
0241
0242 | | | | | | | • | , • • • | | | | | |--------------|--|--|--|---|--|---|---|---|--|--| | mdd u2 | 2.70
22.00
<1.00
23.84
34.98 | 441.34
41.54
23.882
46.67
66.67 |
63.78
63.78
63.78
6.92
56.36 | 34.72
64.82
17.88
30.14
51.77 | 44.31
18.64
7.69
74.76 | 38.74
67.887
64.21
66.31 | 49.35
65.09
54.29
44.94 | 57.21
59.07
50.97
48.75 | 52.38
51.77
58.03
7.14
58.67 | | | #dd \ | 2.34
<0
1.98
<40 | 14.64
14.66
16.02
7.25 | 64.65
78.39
16.68
59.30 | 15.063
12.063
14.084
19.09 | 18.19
5.64
29.34
7.97 | 70.47
21.10
20.10
7.55
6.83 | 8 7 8 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 | 466899
4668374
5088 | 6.41
7.04
10.21
17.21
7.17 | | | E Q Q | <pre><26.00 <26.00 <26.00 <26.00 <26.00 <26.00</pre> | 00°92°
\$26.00
\$26.00
\$26.00
\$26.00 | <pre><26.00
<26.00
<26.00
<26.00
<26.00
<26.00</pre> | \$29.00
\$29.00
\$29.00
\$29.00
\$29.00 | . 526.00
. 226.00
. 226.00
. 226.00 | <pre></pre> | <26.00
28.39
27.15
<26.00
28.44 | 28.28
<26.00
<26.00
<26.00
<26.00 | <pre><26.00 <26.00 <26.00 <26.00 <26.00 <26.00</pre> | | | € d d . | 13.47
<1.80
110.80
<1.80 | <pre></pre> | <pre><1.80 <1.80 <1.80 <1.80 <1.80 <35.45</pre> | 2000
8000
8000
8000
8000 | <1.80 1.80</1.80</1.80</1.80</1.80</1.12</th <th><pre><1.80 <1.80 <1.80 <48.55 <4.19</pre></th> <th>60.28
56.48
56.20
58.03
58.03</th> <th>61.88
61.66
63.09
66.57
60.16</th> <th>54.83
52.35
52.69
<1.80
37.66</th> <th></th> | <pre><1.80 <1.80 <1.80 <48.55 <4.19</pre> | 60.28
56.48
56.20
58.03
58.03 | 61.88
61.66
63.09
66.57
60.16 | 54.83
52.35
52.69
<1.80
37.66 | | | maa rs | 23.47
21.05
170.20
17.06
63.31 | 252.20
208.80
386.80
558.00
334.00 | 17.64
8.42
5.57
6.97
183.80 | 156.90°
293.50
59.60
279.70
316.20 | 262.90
40.30
33.72
39.12
7.72 | 4.60
303.50
173.70
464.60
507.30 | 471.80
459.10
467.80
501.50
516.30 | 475.00
550.40
443.50
528.10
434.70 | 501.50
492.30
625.30
8.20
486.30 | | | edd vS | <pre><20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <20.00
<20.00
<20.00
<20.00
<20.00 | <pre><20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <20.00
<20.00
<20.00
<20.00
<20.00 | <pre><20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre></pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00</pre> | | | Rb ppa | 10.0
140.0
10.0
10.0 | 260.0
260.0
260.0
100.0 | 600.0
660.0
580.0
540.0 | 220.0
230.0
190.0
200.0
240.0 | 200.0
80.0
30.0
70.0
600.0 | 480.0
220.0
190.0
140.0 | 150.00
160.00
150.00 | 160.0
120.0
150.0 | 140.0
110.0
120.0
30.0 | | | #dd qd | <15.00
<15.00
<15.00
<15.00
<15.00 | <pre><15.00 <15.00 <15.</pre> | 31.74
27.94
20.73
34.39
<15.00 | <pre></pre> <pre><</pre> | <15.00
38.45
27.65
15.22
27.50 | 35.12
<15.00
<15.00
<15.00 | | \$15.00
\$15.00
\$15.00
\$15.00
\$15.00 | <pre></pre> | | | E C C | 169.30
<14.00
396.40
<14.00 | 685.40
753.30
603.80
884.20
899.40 | 37.75
<14.00
81.91
<14.00
884.50 | 708.70
673.10
56.74
538.30
892.40 | 858.00
<14.00
<1.56
<14.00 | 44.98
1,392.00
840.90
765.10 | 978.20
830.00
983.40
804.60
828.10 | 788.60
1,022.00
891.10
1,000.00 | 944.40
918.00
1,069.00
14.00
967.50 | | | i N
E a a | 4.97
64.00
64.00
74.00
74.00 | <pre></pre> <pre>< 4.00 < 4.00 < 6.83 </pre> <pre>< 7.25</pre> | 5.40
64.00
7.00
7.00
7.00
7.00 | 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, | <pre></pre> | <pre><4.00 <4.00 <4.00 12.17 5.61</pre> | 5.84
7.78
7.78
9.53 | 5.00
7.00
7.40
7.40
7.40
7.40 | 4.47
<4.00
7.10
<4.00 | | | sample | 0164
0165
0166
0168 | 0201
0202
0203
0204
0205 | 0206
0207
0208
0209
0210 | 0211
0212
0213
0215 | 0217
0219
0220
0221 | 0223
0224
0225
0226 | 0228
0229
0230
0231 | 0233
0234
0235
0236 | 0238
0239
0240
0241 | | | Ba po | 949.000
1,212.000
1,133.000
1,334.000 | 1,023,000
929,200
884,100
11,350
236,500 | 36.050
9.560
12.310
16.080
27.260 | 25.360
20.410
14.400
25.440
23.420 | 21,170
27,090
19,830
14,350 | 18,900
50,750
22,660
39,690 | 10.930
11.310
21.930
29.270
21.650 | 369,500
49,740
12,980
14,790
15,880 | 23.880
9.810
655.200
2.050
33.420 | |-------------|--|--|---|--|--|---|--|---|--| | T ; X | .3114
.4576
.3818
.4639 | .2803
.3174
.3962
.0480 | 0483 | .0472
.0481
.0437
.0277 | .0276
.0170
.0248
.0530
.2316 | 0334 | . 0517
. 0270
. 0513
. 0251 | .5009
.0275
.0366
.0411 | .0423 | | Six | 30.72
31.88
31.29
31.24 | 288.
28.
28.
28.
38.
38.
48. | 34.61
35.60
35.60
5.27 | 35.21
35.16
35.72
35.88 | 34.88
35.01
35.39
34.76 | 36.34
36.31
36.11
36.11 | 36.41
38.12
35.55
5.10 | 37.09
37.09
35.09
36.51
35.90 | 34.70
37.25
28.86
34.88 | | Na% | NNWNN
400K4 | ~~~~
~~~~~
~~~~~ | 0.0440
0.0440 | 0000 8
mmmm N | m ← w m v | wwww.
0 | W W W W W W W W W W W W W W W W W W W |
 | 2.5 | | X
G
W | . 7725
. 2266
. 0667
. 3148 | 1.0812
1.1524
.0674
.0478 | .0977
.0580
.0580
.0580 | . 0359
. 0358
. 0384
. 0307 | .0450 | .0658
.0433
.0619
.0459 | .0338
.0170
.0519
.0225 | .0121
.0664
.0254
.0650 | .0342
.0447
1.1993
.5548 | | х
ч | 1.56
2.58
2.40
2.41
2.41 | 1.45
1.37
2.38
2.50
2.09 | 2.26
1.86
2.17
1.97
2.00 | 2.03
2.03
1.99
2.05 | 1.90
1.93
2.15
2.07
2.05 | 2.03
2.00
1.98
1.96 | 2.03
2.03
1.991 | | 2.10
1.10
1.10
1.01 | | Fe% | 2.9139
2.0139
1.0812
1.7769
2.4075 | 2.8527
3.0810
1.3748
.5773 | . 6387
. 6185
. 6376
. 6248 | 6404
64132
 | .6702
.6160
.5955
.6159 | .7383
.4999
.5563
.5750 | | .0182
.6963
.7134
.5565 | . 6736
3,6523
4,470 | | C a % | 2.570
1.240
.160
.950 | 2.320
2.960
.460
1.040 | | | . 370
. 490
. 750
. 730 | .310
.660
.760
1.010 | | 470450910 | 1.880
.610
3.720
39.990 | | ALZ | 9.2764
7.7518
8.4526
8.8367
8.3904 | 9.5493
9.2029
8.6429
6.8516
6.881 | 6.5788
6.9857
7.4249
7.3204
6.8315 | 6.9000
6.9404
6.3391
6.9256
7.1199 | 7.1123
6.6613
7.0940
6.9467
8.1942 | 6.6567
6.6805
7.1517
6.9103
6.3005 | 6.7666
6.8275
6.3862
6.7346 | 4.2081
6.7103
6.4889
6.8186 | 6.4096
5.6540
8.4753
0800
6.3028 | | Longitud | 113 37 37
113 37 37
113 36 23
113 36 23 | 113 37 24
113 35 18
113 36 47
113 37 14 | 1113 36 59
1113 36 47
1113 36 47
113 37 2 | 1113 37 29 1113 36 55 113 36 15 43 43 43 43 43 43 43 43 43 43 43 43 43 | 113 35 46
113 35 88
113 35 58
113 34 10 | 113 35 33
113 36 33
113 36 24
113 36 54
113 37 10 | 113 37 14
113 37 4
113 37 23
113 37 55
113 37 52 | 1113 37 56
1113 37 52
1113 38 0
1113 38 10 | 113 37 43
113 37 59
113 32 45
113 34 17 | | Latitude | 38 1 30
38 1 17
38 1 35
38 1 12 | 388 2 2 2 2 3 3 8 8 2 2 2 2 2 2 2 2 2 2 | 388 3 3 5 0 3 3 8 8 4 1 1 2 3 8 8 8 4 1 1 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 388 88 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 388 6 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 38 6 0
33 5 42
38 5 37
38 5 41
38 5 41 | 388 4 24
388 4 24
388 4 111
388 4 111 | 38 4 3
38 3 50
38 10 2
38 6 28
38 7 50 | | a d mes | 0243
0245
0247
0250
0251 | 0255
0254
0255
0255
0255 | 0258
0259
0260
0261
0262 | 0253
0264
0266
0266 | 0269
0270
0271
0272
0273 | 0275
0276
0277
0278
0279 | 0280
0281
0282
0283
0283 | 0285
0286
0287
0288
0288 | 0290
0291
0293
1001 | | ed d a | 22 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - | 10.04
12.86
18.56
77.55 | 82.17
113.40
84.65
113.30
50.70 | 882
782
783
783
783
793
793
793
793
793
793
793
793
793
79 | 123 . 90
111 . 131 .
131 . 131 | とうほう くん | 45.64
121.10
62.54
120.50
61.19 | 16.92
73.65
73.65
73.65 | 76.86
68.c0
14.75
<3.00
48.44 | |---------------|--|--|---|--|---|------------------------------|---|---|--| | E dd OM | × × × × × × × × × × × × × × × × × × × | | A A A A A A A A A A A A A A A A A A A | 00 % 00 % 00 % 00 % 00 % 00 % 00 % 00 | ************************************** | ധരയയയ | <pre>< 43.80</pre> < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 3.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 < 4.80 </td <td>× × × × × × × × × × × × × × × × × × ×</td> <td>× × × × × × × × × × × × × × × × × × ×</td> | × × × × × × × × × × × × × × × × × × × | × × × × × × × × × × × × × × × × × × × | | e d d | 400.2
457.7
36.3
445.5 | 471.5
569.4°
28.2
501.5
835.8 | 478.6
880.5
559.6
720.1
613.8 | 779.4
490.7
414.2
561.8
517.0 | 677.4
904.5
617.7
503.6
123.8 | 4 7 8 5 . | 494.2
883.4
595.6
901.1 | 29.4
628.0
513.0
715.7
662.7 | 663.8
354.2
724.3
755.7
442.9 | | Li ppm | 100 100 41 | 21
21
8
8
8
8 | 7 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 102
52
30
30
30 | 0 4 4 6 0 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3 1 16 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | La ppm | \$20.36
71.35
71.35
39.09 | 51.45
52.47
61.28
36.08
32.57 | 38.85
23.58
37.29
17.65 | 80 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 21.07
23.94
23.74
41.86 | 78487 | 46.32
17.63
36.69
28.42
28.42 | <pre><1.60 24.71 29.71 39.76 38.35</pre> | 35.24
33.49
40.39
<1.60
36.71 | | F JG | 602
380
148
476
510 | 594
590
2,220
2,330 | 1,366
770
1,506
1,152
2,120 | 1,466
2,920
2,330
2,060
2,060 | 2, 430
2, 180
3, 780
2, 860
3, 860 | 0 - 2 2 4 | 312
2,860
124
1,820
1,570 | 330
1,602
1,786
2,180
2,630 | 434
434
708
88
472 | | C u pps | 6.89
4.28
2.73
5.13 | 7.51
8.55
3.42
<2.00 | 2.33
<2.00
<2.00
<2.00
<2.00 | 2.49
<2.00
<2.00
<2.50
<2.50 | 2.24
<2.00
<2.00
<2.00
<2.00 | 00240 | <pre><2.00 <2.00 <2.00 <2.00 2.59 </pre> | <pre></pre> | <2.00
<2.00
13.25
<2.00
<2.00 | | edd . J | 5.64
5.50
5.57
6.1.50 | 10.71 | <1.50
<1.50
<1.62
5.60
6.74 | 8.76
3.45
<1.50
7.96
8.44 | 82.00
1.00
1.00
1.00
1.00
1.00 | ~~ | <1.50
8.08
7.41
7.79 | 11.12
<11.50
<1.50
<1.50
<1.50 | <1.50<1.50<3.12<1.50<1.50<1.50 | | Ce ppa | 80.00
193.70
155.40
185.50 | 91.08
94.51
114.00
81.77
95.16 | 95.06
66.66
87.89
57.70 | 89.02
99.26
99.99
93.71 | 68.83
71.40
57.73
88.13 | 7.15
7.16
9.17
9.00 | 114,50
65,18
101,40
68,34
81,09 | <pre>< 9.00 72.73 82.97 88.32 82.85</pre> | 81.80
76.27
68.57
69.00
103.50 | | Bi ppm | <pre></pre> | <pre></pre> | <pre></pre> | <pre></pre> | <pre></pre> | 50.0
50.0
50.0 | <pre></pre> | 00.000 | <pre><50.00 <50.00 <50.00 <50.00 <50.00 <50.00</pre> | | မေးငှ ဝေးမှား | 1.8500
2.2300
1.4700
2.5100
2.5100 | 1.9700
1.8100
2.1900
11.7000 | 12,1000
19,0200
12,3100
9,6100 | 13.7800
10.0400
10.3800
9.3800 | 9. 3900
7. 6900
9. 4900
2. 0800 | 30000 | 8.6536
16.0969
8.1600
11.6900 | .3300
8.6700
8.4900
10.1100 | 10.5800
9.8900
1.5300
<.0400
7.3300 | | sample | 0243
C245
0247
0250
0251 | 0252
0254
0255
0255
0256
0257 | 0258
0259
0260
0261
0261 | G263
G264
G265
G265
G266 | 0269
0270
0271
0272
0273 | 7222 | 0280
0281
0283
0283 | 0285
6286
0287
0288
0289 | 0290
0291
0293
1001 | | mdd n2 | 45.09
47.09
7.23
48.91
60.54 | 65.99
63.83
4.15
80.06
47.18 | 36.26
108.40
49.92
36.87 | 69.46
45.24
50.39
42.30
50.39 | 53.80
45.54
22.98
29.78 |
33.82.
24.93.
39.62.
31.01 | 38.59
69.88
48.93
67.54
32.28 | 1.43
35.25
32.10
40.73
111.30 | 47.39
37.01
46.54
<1.00
40.78 | |-----------|--|--|---|---|---|---|---|---|---| | ۲
۳۵۵ | 8.07
20.56
8.49
15.73 | 8.64
8.30
6.36
73.43 | 76.47
84.65
71.30
64.07 | 80.75
71.46
64.23
67.49
65.08 | 85.01
78.25
97.20
69.63 | 66.77
34.76
96.47
71.17
57.43 | 46.57
88.64
52.00
81.18 | 3.65
71.86
61.36
87.73
151.80 | 74.18
66.75
11.22
6.40
49.58 | | E Q Q | <pre></pre> | <26.00
<26.00
<26.00
<26.00
<26.00 | <pre></pre> | <pre></pre> | | 00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92 | <pre></pre> | 00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92
00.92 | <26.00
<26.00
26.00
<26.00
<26.00 | | E d d > | 52.70
<1,80
27.76
<1.80 | 53.17
57.11
61.80
61.80 | <pre><1.80 <1.80 <1.80 <1.80 </pre> <pre></pre> <pre><</pre> |

88888 | , , , , , , , , , , , , , , , , , , , | <pre></pre> <pre><</pre> | <1.80
<1.80
<1.80
7.75
12.34 | <pre></pre> | <1.80 1.80</1.80</1.90</1.80</1.80</td | | S mad | 485.00
245.00
63.43
319.10
203.90 | 525.50
467.90
91.90
5.14
21.04 | 9.00
12.45
7.70
6.67 | 8.20 ° 5.15 ° 10.09 ° 11.89 | 8.28
7.30
12.72
14.00 | 4.51
14.19
10.50
10.34
777.90 | 4.48
4.84
10.21
3.96
10.90 | 30.20
7.65
4.28
8.62
11.68 | 32.07
15.11
479.10
27.23
7.57 | | mdd uS | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00</pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre></pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre><20.00 <20.00 <20.00 <20.00 <20.00 <20.00 </pre> | <pre></pre> | <pre>< 20.00 < 20.00 < 20.00 < 20.00 < 20.00 < 20.00 </pre> | 00.05> | <20.00
<20.00
<20.00
<20.00
<20.00 | | Rb ppm | 150.0
230.0
230.0
220.0
200.0 | 130.0
110.0
250.0
500.0
600.0 | 0.047
580.0
580.0
860.0 | 530.0
550.0
550.0
550.0
570.0 | 760.0
720.0
750.0
480.0
160.0 | 0.04
240.0
720.0
770.0
770.0 | 750°0
280°0
280°0
280°0
450°0
450°0 | 20°0
800°0
500°0
540°0
540°0 | \$00.0
450.0
110.0
20.0
340.0 | | P D D B | <pre><15.00 <15.00 <15.00 <15.00 <15.00 </pre> | <15.00 15.00</15.00</15.00</1 31.84 11</td <td></td> <td>32.76
41.09
39.58
30.83
35.41</td> <td>38.18
47.01
45.42
27.91</td> <td>27.13
31.45
40.26
43.21
41.93</td> <td>22.40
65.76
41.65
. 67.13</td> <td>25.04
32.59
40.88
34.64</td> <td>30.68
26.27
<15.00
<15.00
38.15</td> | | 32.76
41.09
39.58
30.83
35.41 | 38.18
47.01
45.42
27.91 | 27.13
31.45
40.26
43.21
41.93 | 22.40
65.76
41.65
. 67.13 | 25.04
32.59
40.88
34.64 | 30.68
26.27
<15.00
<15.00
38.15 | | E d d | 911.60
929.10
264.30
780.60
957.20 | 943.90
1,043.00
529.80
16.23 | 0 7 7 7 7 | <14.00
16.74
31.33
356.10
39.38 | <14.00
26.17
14.19
33.15
286.90 | <14.00
33.87
45.55
33.17
55.92 | 162.20
<14.00
225.40
<14.00 | 85.08
<14.00
<14.00
155.30 | <14.00
109.90
718.50
<14.00 | | E G G L N | <pre></pre> | 7.97
7.59
7.59
7.00
7.00
7.00 | | 7.46
<4.00
<4.00
<5.91 | 00.4> | 000.77 | 000000 | 000.777 | <pre><4.00 <4.00 <4.00 <4.00 <4.00 <4.00 </pre> | | a) dwe s | 0243
0245
0247
0250
0251 | 0252
0254
0255
0255
0256 | 22222 | 0263
0264
0265
0266
0267 | 0269
0270
0271
0272
0273 | 0275
0276
0277
0278
0278 | 0280
0281
0282
0283
0283 | 0285
0286
0287
0288
0288 | 0290
0291
0293
1001
1002 | | Ba ppm | 34.980
90.830
179.200
1,344.000 | 45.770
73.980
419.200
323.700 | 13.860
97.000
23.650
8.280 | 126.300
505.100
31.334
9.800
354.700 | 507.200
1,787.000
10.640
15.840
23.530 | 3.910
16.620
15.620
9.990 | 22,120
2,431,000
1,512,000
664,200 | 9.770
14.740
58.580
11.060
34.390 | 127.800
25.210
163.400
79.910 | |--------------|---|--|---|--|---|---|--|--
--| | Tix | .0233
.0289
.0463
.4462 | .0209
.0122
.0877
.2893 | .0490
.0508
.0420
.0341 | .0571
.1819
.0285
.0487 | . 2326
.0456
.0352
.0470 | .0065
.0037
.0011
.0002 | .0040
.2049
.2102
.2036 | .0262
.0332
.0359
.0475 | .0790
.0033
.1001
.0393 | | Six | 34.96
31.79
22.06
31.44 | 19.15
32.20
32.29
16.91 | 35.68
36.06
35.23
35.23 | 32.82
30.94
41.65
34.12
30.69 | 30.88
36.92
36.92
36.92 | .47
.19
44.30
11.48 | 4.07
34.23
32.66
31.24
35.92 | 36.08
38.51
36.48
35.23 | 29.22
46.82
29.59
42.73 | | %eN | W \N | | 0 + 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × | 11.2 | | | V | N1 1 N N | | | %
55
W | .2304
.0240
.0247
.5165 | .0100
.0064
.0136
.0405 | .0863
.5187
.0251
.0216 | . 2854
. 6276
. 0218
. 2534
. 7554 | .9213
1.2274
.0377
.0352 | 16.3781
11.8839
7491
.5947 | 8.2472
.4000
.5786
.5681 | .0360
.0203
.2308
.0304 | .0363
.0716
.0571
.0952 | | Х, | 11.77 | 2.52 | 2 . 2 5 . 2 5 . 2 5 . 2 6 . 2 . 1 7 5 . 1 7 6 . 1 7 | 8 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 1 | .01 | 3 | 2 2 2 4 4 9 4 9 4 9 4 9 9 4 9 9 9 9 9 9 | | | Fe% | .6290
.0279
8.5004
2.1328 | .0197
.0509
1.6048
.1484 | .1632
.5036
.6421
.4874 | 7618
1,4890
4392
5965 | 1,7279
,5598
,3800
,6937 | .0506
.0585
.0322
.0396 | .0679
1.7536
1.7091
1.9187 | . 4354
4354
. 4617
. 5766 | 12.1611
. 1958
8.6601
. 0255 | | Ca% | 1.110
.160
.640
1.810 | . 23.860 | .500
1.040
.390
.490 | 1.490
2.020
.120
1.480
2.830 | 2.700
1.860
.150
.350 | 23.360
23.860
1.160
31.300
4.430 | 29.200
.990
.1.140
2.870 | 350
350
1.350
490
590 |
800
800
100
100
100 | | A L % | 6.2033
5.9457
3.5028
8.8457
8.1778 | 11.3253
6.3038
7.1529
13.5260 | 7.0312
6.8886
6.3123
6.7741
7.1516 | 7.0605
7.6741
3.6509
7.1029
6.5782 | 7.1327
6.7070
7.2169
6.8563
6.9190 | . 1841
. 1399
. 1265
. 0663 | .1313
7.5704
7.4421
6.7973
6.6767 | 6.7283
4.9224
4.9603
5.9094
6.6164 | 3.7987
.4023
4.9060
.2990 | | Longitud | 113 36 16
113 34 11
113 34 19
113 34 49
113 34 48 | 113 34 46
113 34 46
113 34 13
113 34 13 | 113 35 50
113 36 49
113 36 35
113 36 34 | 113 35 47
113 34 5
113 34 59
113 34 40 | 113 34 39
113 34 23
113 34 30
113 34 36
113 34 35 | 113 34 40
113 34 37
113 34 37
113 34 36
113 54 36 | 113 34 34
113 34 34
113 34 33
113 34 33 | 113 36 26
113 36 2
113 36 2
113 36 2 | 113 33 22
113 33 22
113 33 21
113 33 16
113 33 16 | | Latitude | 388 8 46
388 8 44
388 8 22
38 22 22 | 38 8 40
38 8 39
38 7 11
38 7 12
5 5 24 | 388 2 40
388 3 112
388 3 111
388 3 111 | 3888 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 333334 4 4 50 333 33 4 4 4 50 50 50 50 50 50 50 50 50 50 50 50 50 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 388 5 10
388 5 20
388 5 34
388 5 33
5 33 | 338
388
388
388
388
388
388
388
388
388 | | sample | 1003
1004
1005
1006 | 1008
1009
1010
1011 | 1013
1014
1015
1016 | 1018
1019
1020
1021
1022 | 1023
1024
1025
1026 | 1028
1029
1030
1031 | 1033
1034
1035
1036
1037 | 1038
1039
1040
1041 | 1043
1044
1045
1046 | | Edd 9N | 85.87
30.67
30.67
<3.00
24.59
20.84 | 24.62
35.33
4.38
6.90
8.90 | 78.21
89.00
71.93
59.63
86.75 | 100.40
30.28
42.65
78.77
51.08 | 7.00
4.00
7.00
7.00
7.00
7.00
7.00
7.00 | | <pre><3.00 10.47 11.40 12.87 110.70</pre> | 115.90
50.14
61.30
76.51
79.62 | 6.63
(3.00
10.66
62.13
(3.00 | |------------|---|---|---|--|--|--|---|---|--| | M
E Q Q | <pre><3.80 <3.80 <</pre> | <pre></pre> | <pre></pre> | × × × × × × × × × × × × × × × × × × × | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000000
% % % % % % % % % % % % % % % % % | 5.37
<3.80
6.00
5.43 | 61.53
<3.80
182.30
<3.80
<3.80 | | EGG UN | 707.1
29.7
5.3
594.2 | 14.2
117.7
18.9
4.5
36.7 | 113.5
398.6
309.4
479.1
673.8 | 1,258.0
423.8
348.7
493.2
632.5 | 414.7
644.6
83.7
443.7
287.3 | 7.00
7.00
7.00
7.00
7.00
7.00 | 261.3
163.9
200.7
481.2
707.3 | 637.2
414.7
451.2
580.7
603.1 | 2 K 8 K L K 8 K K K K K K K K K K K K K K | | Li ppm | 14 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 24426 | 38
27
28
15 | 101
58
52
8 | 68468
6834
7 | , 38 8 3
4 5 5 5 8 3 | 2 | 88
7 7 3 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 <u>-</u> 000 | | La ppm | 7.94
18.99
12.98
75.87 | 8.95
2.16
55.79
33.00
<1.60 | 9.97
18.48
30.14
28.93
30.15 | 27.03
47.31
13.33
31.01
37.93 | 44.37
44.89
14.88
32.08
24.85 | 1888
61.60
71.60
71.60
71.60 | 24, 85
26, 98
34, 50
21, 75 | 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 17.35
<1.60
6.32
<1.60
<1.60 | | F QQ | 638
358
416
504
362 | 638
276
876
2,040
294. | 268
1,686
1,926
400
1,526 | 2,820
2,780
92
120
436 | 2,200
4,180
1,050
2,780
930 | 166
478
276
236
148 | 254
424
304
3,140 | 2,940
1,994
1,994
1,60 | 538
88
896
850
50 | | edd ng | 2.05
<2.00
<2.00
<23.09
<23.09 | <pre><2.00 <2.00 <2.25 <2.00 <2.00 <2.00 </pre> | <pre><2:00 2:21 <2:00 <2:00 <2:00 <2:00 <2:00</pre> | 2.17
2.03
62.00
62.00 | 3.78
62.00
62.00
62.00 | \$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | <pre><2.00 <2.00 <2.53 3.21 <2.00</pre> | <pre></pre> | 00 00 00 00 00 00 00 00 00 00 00 00 00 | | Cr ppm | 6.57
20.24
<1.50
6.99 | 17.82
24.30
7.94
14.13 | 8.39
9.09
7.96
11.15 | 10.72
18.03
6.49
11.33 | 13.00
3.08
9.94
10.02 |
 |
20.50
20.56
17.36
9.28 | 10 9 9 7 5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | <1.50
9.44
<1.50
8.60
5.15 | | Edd əj | 59.32
27.56
<7.00
208.90 | 17.57 | 21.30
56.46
86.10
104.10 | 88 4 4 8 8 3 4 8 8 3 4 8 8 4 8 8 4 8 8 4 8 8 4 8 4 | 74.88
46.91
84.36
3.86 | 00000 | 79.00
75.47
60.51
70.68 | 64.63
70.56
78.75
93.93 | 25.31
<9.00
<9.00
<9.00
<9.00 | | B; ppm | <pre></pre> | <pre></pre> | 000.000.0000.0000.0000.0000.0000.0000.0000 | 000000000000000000000000000000000000000 | 00000000000000000000000000000000000000 | 00°00°00°00°00°00°00°00°00°00°00°00°00° | <pre></pre> | <pre></pre> | <pre><>0.00 <>50.00 <>50.00 <>50.00 <>50.00 </pre> | | Be bb | 9.7000
3.9800
.2900
2.9100 | 1.9600
3.7100
1.2500
.3400 | 8.9600
4.8900
9.2500
9.2600 | 28.7500
7.6900
5.7600
11.3100
9.5800 | 7.0900
15.1800
9.1100
9.6500 | | 1.6200
2.6000
1.7500
1.7500 | 9.3600
7.2100
50.2100
12.1200 | .2500
.2900
.4500
.4800
.0400 | | aldmes | 1003
1004
1005
1006 | 1008
1009
1010
1011 | 1013
1014
1015
1016 | 1018
1019
1020
1021 | 1023
1024
1025
1026 | 1028
1029
1030
1031 | 1033
1034
1035
1037 | 1038
1039
1040
1041
1042 | 1043
1044
1045
1046 | | e
Q | 31.85
22.38
21.94
51.91 | 3.00
5.43
3.44
2.09 | 19.11
11.10
39.60
33.52
69.31 | 6.70
11.22
19.64
52.15 | 74.67
11.08
13.02
12.63 | <1.00
20.93
1.25
40.75
36.20 | 21.84
47.97
43.21
64.74
52.49 | 57.16.
31.70
53.39
75.03 | 3.35
1.74
3.14
5.00
2.22 | |-----------|---|--|---|--|---|---|---|--|---| | 2 n | м vi | - | L | £ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | N O N N M | V10 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 5 (1) 5 11 5 | | | m d d | 48.84
3.91
6.40
23.51
1.24 | 138.27
138.32
14.70
14.00 | 12.52
54.01
59.71
63.15 | 70.28
24.21
37.01
66.10
36.40 | 30.37
94.70
25.44
58.24
42.29 | V V V V V | 6.41
6.57
6.41
8.54
8.54 | 884.28
84.28
84.58
84.58
84.58 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | m d d | <26.00
<26.00
57.84
<26.00
<26.00 | <26.00
<26.00
<26.00
<26.00
<26.00 | <26.00
<26.00
<26.00
<26.00
<26.00 | <26.00
<26.00
<26.00
<26.00
<26.00 | <26.00
<26.00
<26.00
<26.00
<26.00 | <26.00
<26.00
<26.00
<26.00
<26.00 | <pre><26.00 <26.00 <26.00 <26.00 <26.00 <26.00 </pre> | <26.00
<26.00
<26.00
<26.00
<26.00 | 83.82
<26.00
56.49
<26.00 | | wdd 7 | 18.95
30.96
24.89
<1.80
5.86 | 21.91
31.97
28.17
32.81 | <pre></pre> <pre><</pre> | 10.32
15.74
<1.80
<1.80 | 11.34
4.27
4.80
61.80 |
 | 21.80
21.18
21.07
81 | , , , , , , , , , , , , , , , , , , , | 230.70
9.38
268.40
<1.80 | | Sr ppm | 13,44
282,20
139,20
369,00 | 119.80
104.80
153.40
446.30
46.15 | 19.67
613.70
4.33
3.52
20.53 | 931.80°
1,301.00
5.55
128.70 | 830.90
2,183.00
8,74
13.26
3.51 | 23.51
29.28
15.27
206.40
15.61 | 81.96
170.80
238.50
278.00 | 4.13
11.49
515.40
5.41
8.92 | 312.70
13.04
222.20
5.64
2.43 | | wdd uS | <pre><20.60 <20.60 <20.00 <20.00 <20.00 </pre> | <20.00
<20.00
<20.00
<20.00
<20.00 | <20.00
<20.00
<20.00
<20.00
<20.00 | <20,00
<20,00
<20,00
<20,00
<20,00 | <20,00
<20,00
<20,00
<20,00
<20,00 | <pre></pre> | <pre><pre></pre></pre> | <20,00
<20,00
<21,37
<20,00
<20,00 | <20.00
<20.00
<20.00
<20.00 | | яь рош | 660.0
20.0
210.0
50.0 | 70.0
40.0
10.0
330.0 | 550.0
220.0
530.0
510.0
560.0 | 500.0
150.0
320.0
410.0 | 260.0
160.0
530.0
510.0 | 20.00 | 20.0
400.0
170.0
110.0 | 750.0
380.0
180.0
520.0 | 60.0
10.0
60.0
20.0
6.1 | | P 0 0 0 0 | 50.30
74.42
<15.00
16.26
<15.00 | 37.47
62.93
<15.00
<15.00
<15.00 | 41.40
31.49
42.80
51.69
53.54 | 89.26
<15.00
20.41 :
36.91 | 15.68
38.49
30.81
45.27
35.39 | <pre></pre> <pre><</pre> | <pre><15.00 <15.00 16.50 . 16.12 63.67</pre> | 61.70
33.32
35.21
60.05 | <15.00
<15.00
<15.00
17.37
<15.00 | | E C C | <14.00
236.50
553.20
1,133.00 | 147,50
93.82
322.10
383.80
<14.00 | | <14.00
349.10
<14.00
22.30
22.17 | 276.30
<14.00
<14.00
<14.00 | <pre></pre> | <14.00
578.70
575.10
546.20
43.33 | <14.00
<14.00
64.81
<14.00
60.43 | 985.70
<14.00
801.00
22.42
<14.00 | | E Q Q | 00.4>
00.4>
00.4>
00.4> | 00.44 | 000.44
000.44
000.44
000.44
000.44 | 00.44 | 7.04
44.00
44.00
44.00
44.00
44.00 | 000.4 | 64.00
64.00
64.00
64.00 | 00.4
00.4
00.4
00.4
00.4
00.4
00.4
00.4 | 000.44 | | sample | 1003
1004
1005
1006 | 10008
10019
1011
2101 | 1013
1014
1015
1016 | 1018
1019
1020
1021 | 1023
1024
1025
1026 | 1028
1029
1030
1031 | 1033
1034
1035
1036 | 1038
1039
1040
1041 | 1043
1044
1045
1046
1047 | | Ba co | 336.100
547.500
6.070 | 0.50 | • 00 |
83.71 | 4.81 | 3,053,000 | 7 | | 395, 40 | 2,126,000 | 16.49 | ۶. | 03.00 | 87.20 | 43.00 | 84.00 | 0.770 | 358.70 | 1,022,000 | .450,00 | ,425.0b | 13.70 | 2494000 | 13.16 | 91.10 | \$0.52 | 79.110 | 23.90 | 0.70 | |-------------|-------------------------------------|--------------------|---------|---------|---------|------------------------|---------|--------|---------------------------------------|-----------|-------|--------|---------|--------|---------|---------|---------|--------|-----------|---------|---------|----------|-----------|--------------|---------|---------|--------|-------|---------| | Tix | .3479
.3283
.0315 | 002 | 133 | 052 | 018 | .2344 | 7 % | 007 | 078 | . 5191 | 035 | .2574 | 223 | 7 0 | 319 | 439 | 378 | 126 | .3298 | 777 | 532 | 970 | .0850 | 047 | 169 | 037 | .0227 | 43 | 558 | | Siz | 44.73 | 2.6 | ٣. | 0 | | 32.58 | α | ,
, | 3.1 | 26.62 | 5.9 | ∞ | 5.2 | ň | 6.8 | 0.1 | ٣, | 4.5 | ۲, | 1.6 | 2.0 | 4.7 | 36.90 | 3.3 | 8.5 | Š | 39.44 | 9.9 | 5.7 | | N e N | , , ,
, | | ۲., | • | · | | | • | | | 3.1 | 1.6 | | • | | • | | • | 3.5 | • | • | • | ٠., | • | • | 3.1 | 1.1 | • | | | %
5
W | .1175
.0168
13.5361 | 3.067 | 015 | 020 | 000 | .4247 | 410 | , v | 159 | .1898 | 057 | . 5023 | 175 | 5.5 | 605 | 103 | 10 | 073 | -1404 | 5 7 2 | 228 | 063 | .2182 | 051 | 672 | 068 | | .418 | 779 | | %
% | .02 | 20 | 0. | 9 | 0 | 1.96 | | • - | | 2,15 | ۲. | • | ۲. | 2 | ۶. | ٥, | 7. | 0 | 5.40 | ۷. | • • | ,
1~J | 1.26 | ٥. | ۰, | ٥. | 1.00 | S | 0 | | Fe% | .0284 | 100 | .014 | 242 | .014 | 2.2703 | 200 | 077 | 927 | 2,3445 | .643 | 788 | 669. | | 823 | .219 | . 504 | .539 | 1.7127 | .255 | .869 | 379 | .8186 | .632 | 166 | 767. | .2521 | .448 | 073 | | % e) | .110 | 3.95 | .10 | 0 | 9.45 | .380 | , | 7 7 | 67. | 1,130 | .21 | 9.7 | 17 | .160 | 52 | 32 | .34 | 27 | .310 | 9 7 | 5 | 3.5 | 300 | .36 | 69 | 96 | 7. | 1.990 | •07 | | AL% | .1441 .1272 .6755 | 692 | 235 | 217 | .021 | 8.8670 | 440 | 17.5 | 796 | 8,5575 | .329 | .121 | .457 | 1.4045 | .019 | .794 | .582 | .210 | 7.4567 | 767. | .042 | .923 | 6.6068 | .533 | .456 | 766. | M | | .399 | | Longitud | 113 33 16
113 33 16
113 33 16 | 13 33 2
13 33 2 | 13 33 2 | 13 33 2 | 13 33 2 | 113 32 52
113 32 51 | 2 72 21 | | 13 33 | 113 35 6 | 13 35 | 13 38 | 13 38 5 | 38 4 | 13 38 3 | 13 36 1 | 13 37 3 | 13 37 | 113 36 14 | 13 36 | 13 3 | 13 36 5 | 113 34 20 | 13 34 | 13 34 2 | 13 36 2 | 13 3 | | 13 37 4 | | Latitude | 38 8 13
38 8 13
38 8 13 | တေထာ
တေထာ | 8 | ಹ
ಹ | დ
დ | 38 4 56
38 4.56 | |) « | • • • • • • • • • • • • • • • • • • • | 38 1 0 | 8 2 1 | - | 8 1 | s
L | 8 1 4 | 3 1 3 | 8 1 1 | 8 1 | 8 | 8 1 | 2 2 | 3 4 2 | 38 4 50 | 7 7 8 | 8 | 3 6 4 | 11 | 3 | 8 3 4 | | sample | 1043 | 0.5 | 0.5 | 0.5 | 0 5 | 1056
1057 | 0 | 2 0 | 0.0 | 2001 | 0.0 | 00 | 00 | 0 | 00 | O | 00 | 00 | 2010 | 0 | 0 1 | 0.1 | 2014 | 0 | 0 | 0 | 0 | 2019 | 02 | | wa dN | 31.28
30.90
<3.00
10.61 | 17.89
<3.00
<3.00
10.95
<3.00 | 33.36
<3.00
13.62
27.37
67.20 | 10.76
8.92
73.00
12.51
23.96 | 21.91
17.29
18.80
23.74 | 83.
22.87.
75.80
6.89 | 33.38
64.50
18.05 | |---------|---|--|---|---|--|--|---| | Mo
F | <pre></pre> | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | × × × × × × × × × × × × × × × × × × × | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | <pre></pre> | × × × × × × × × × × × × × × × × × × × | <3.80
<3.80
<3.80 | | Mn ppm | 15.5
24.6
153.0
460.4
236.5 | 5.2
5.4
5.4
7.4
7.4
7.4 | 56.6
91.0
44.1
235.4
602.6 | 96.7
122.4
12.8
12.8
1.8
1.8
1.8
1.8 | 78.3 -
94.8
153.5
103.8 | 215.3
101.1
578.3
385.8
482.4 | 266.2
470.2
943.9 | | Li ppm | 0
0
1
0
1
0
1
0
0 | 08211 | W + C V W V V W V V W V V W V V V W V V V W V V V W V V V W V V V W V V V W V | 6536
8545
8458 | N 4 0 8 8 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 112 | | La ppm | <pre><1.60 <1.60 19.38 313.10 <1.60</pre> | <pre><1.60 15.25 <1.60 <29.19 <1.60</pre> | 2.01
<1.60
20.78
73.81 | 31.78
27.56
3.38
32.04
71.62 | 64.27
56.88
67.46
70.30 | 42.62
61.68
31.24
28.77 | 8.30
16.48
38.93 | | F ppm | 74
70
374
2,480 | 230
118
52
386
186 | 766
280
130
550 | 562
252
124
608
170 | 276
168
390
358
716 | 2,540
370
1,302
1,532 | 552
418
596 | | mad no | <2.00
<2.00
<2.00
181.30 | <pre></pre> | <pre></pre> | 7.69
7.32
5.29
12.14
25.04 | 6.85
<2.00
2.99
5.15
<2.00 | <pre></pre> | <2.00
<2.00
34.23 | | E0.0 | 10.31 | 4.61
<1.50
<1.50
17.79 | 10.74
0.0
21.40
7.66 | 9.40
20.32
23.99
13.72 | 6.51
7.51
7.51
7.92
7.92 | 9.59
6.52
5.24
7.04 | 10.24
6.69
38.83 | | m d d | <pre><9.00 12.03 <9.00 965.60 <9.00</pre> | <pre></pre> | <pre>< 9.00 < 9.00 66.62 194.90 97.33</pre> | 69.20
59.82
15.20
67.15 | 171.60
146.80
164.10
177.50 | 118.30
149.00
105.90
58.41
50.93 | 23.44
41.33
93.42 | | Bi ppm | <pre><>00.00 <>50.00 <>50.00 </pre> <pre></pre> <pre><</pre> | <pre></pre> | 00°00°00°00°00°00°00°00°00°00°00°00°00° | 00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00 | <pre></pre> | <pre></pre> | <pre>< \$0.00 < \$0.00 < \$0.00 < \$0.00 </pre> | | Ве ррж | .2800
.2800
1.0400
14.4300 | <pre></pre> | 6.7400
<.0400
.5400
2.9700
11.6100 | 1.4800
1.4700
4.2700
1.1100
2.3300 | 1.6200
2.6200
2.3000
2.3300 | 9.7200
1.4100
10.8100
1.4100 | 8.3600
14.5000
1.4500 | | sample | 1048
1049
1050
1051 | 1053
1054
1055
1056 | 1058
1059
1060
2001
2002 | 2003
2006
2005
2006
2007 | 2008
2009
2010
2011
2012 | 2013
2014
2015
2016
2017 | 2018
2019
2020 | | | | | | | | • | | |-----------------------|---
---|---|---|--|---|-----------------------------| | mad uz | 2.66
3.45
<1.00
254.50 | 1.81
13.35
22.75
39.85
7.59 | 21.10
17.51
15.27
44.11 | 51.50
10.50
18.08
21.15 | 31.99
20.32
42.72
54.15 | 71.10:
32.63
89.24
60.99
23.32 | 15.79
33.32
65.53 | | ¥ dd } | 5.86
5.24
6.31
39.79
.40 | 2.81
4.40
7.64
2.17 | 7.02
<.40
3.37
20.00
52.68 | 5.76
4.50
1.75
1.88 | 13.25
8.36
8.11
15.80 | 71.74
5.78
61.06
4.65 | 25.79
41.67
12.08 | | E a a | <26.00
<26.00
<26.00
34.25
<26.00 | <pre></pre> | <pre><26.00 <26.00 <26.00 <26.00 <26.00 <26.00 </pre> | <26.00
<26.00
<26.00
<26.00
<26.00 | | <pre></pre> | <26.00
<26.00
28.42 | | د
د
د
د
د | <1.80
<1.80
<1.80
325.20
<1.80 | <pre></pre> <pre></pre> <pre>37.80 37.54 </pre> <pre></pre> <pre>63.42 </pre> <pre>9.81</pre> | <pre></pre> <pre><</pre> | 58.17
38.52
19.11
40.04
<1.80 | 13.43
40.38
18.68
7.87
<1.80 | <pre><1.80 1.88 <1.80 <7.21 3.61</pre> | 1.93
<1.80
120.80 | | במט הS | 18.65
17.92
1,944.00
22.81 | 44.95
1,280.00
86.07
358.80
97.92 | 8.87
73.13
58.62
357.70 | 229.80,
127.70
38.36
516.10
68.85 | 49.60
74.17
83.45
121.60
255.40 | 8.81
32.89
9.93
363.20
21.69 | 93.52
88.94
486.30 | | S mgg | <pre></pre> | <pre></pre> | 00.005 | <pre></pre> | 00.00°
00.00°
00.00°
00.00°
00.00°
00.00° | <pre></pre> | <20.00
<20.00
<20.00 | | вр рря | 10.0
20.0
60.0 | 0.00.00 | 520.0
20.0
20.0
20.0
20.0
20.0
30.0 | 250.0
490.0
70.0
120.0 | 200.0
10.0
220.0
190.0 | 630.0
100.0
520.0
110.0 | 170.0
430.0
90.0 | | Pb ap | <pre><15.00 20.39 <15.00 26.55 <15.00</pre> | <pre></pre> <pre><</pre> | 24.82
<15.00
45.39
17.38
35.99 | <pre></pre> <pre><</pre> | <pre></pre> | 37.76
<15.00
43.70
43.70
<15.00 | 22.51
29.01
<15.00 | | E C C | <pre><14.00 34.11 <14.00 2,938.00 <14.00</pre> | <pre><14.00 1,916.00 <14.00 674.30 20.70</pre> | <pre><14.00 <14.00 176.80 972.50 <14.00</pre> | 632,20
346,40
378,60
465,40
428,00 | 624.70
168.50
565.50
930.30
274.40 | <14.00
140.50
<14.00
603.90
52.72 | 57.16
<14.00
1,188.00 | | E a a | <pre></pre> | 00.77 | 7,7 % % % % % % % % % % % % % % % % % % | 6.78
64.00
64.00
64.00
76.37 | <pre></pre> | , , , , , , , , , , , , , , , , , , , | <4.00
<4.00
22.28 | | s amp le | 1043
1049
1050
1051
1052 | 1053
1054
1055
1056 | 1053
1059
1060
2001
2002 | 2003
2004
2005
2006
2006 | 2008
2009
2010
2011
2012 | 2013
2014
2015
2016
2017 | 2018
2019
2020 |